首页> 外文OA文献 >A Haar Wavelet-based Multi-resolution Representation Method of Time Series Data
【2h】

A Haar Wavelet-based Multi-resolution Representation Method of Time Series Data

机译:基于Haar小波的时间序列数据多分辨率表示方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Similarity search of time series can be efficiently handled through a multi-resolution representation schemewhich offers the possibility to use pre-computed distances that are calculated and stored at indexing timeand then utilized at query time together with filters in the form of exclusion conditions which speed up thesearch. In this paper we introduce a new multi-resolution representation and search framework of timeseries. Compared with our previous multi-resolution methods which use first degree polynomials to reducethe dimensionality of the time series at different resolution levels, the novelty of this work is that it appliesHaar wavelets to represent the time series. This representation is particularly adapted to our multi-resolutionapproach as discrete wavelet transforms have the ability of reflecting the local and global informationcontent at every resolution level thus enhancing the performance of the similarity search algorithm, which iswhat we have shown in this paper through extensive experiments on different datasets.
机译:通过多分辨率表示方案可以有效地处理时间序列的相似性搜索,该方案提供了使用预先计算的距离的可能性,该距离是在索引时计算并存储的,然后在查询时与排除条件形式的过滤器一起使用,从而可以加快速度搜索。在本文中,我们介绍了一种新的时间序列多分辨率表示和搜索框架。与我们以前的使用一阶多项式来减少不同分辨率级别的时间序列的维数的多分辨率方法相比,这项工作的新颖之处在于它使用Haar小波表示时间序列。这种表示形式特别适合我们的多分辨率方法,因为离散小波变换具有在每个分辨率级别上反映局部和全局信息内容的能力,从而增强了相似性搜索算法的性能,这是我们通过在不同的数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号