首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >A Data Assimilation Method for Simultaneously Estimating the Multiscale Leaf Area Index From Time-Series Multi-Resolution Satellite Observations
【24h】

A Data Assimilation Method for Simultaneously Estimating the Multiscale Leaf Area Index From Time-Series Multi-Resolution Satellite Observations

机译:一种基于时间序列多分辨卫星观测同时估算多尺度叶面积指数的数据同化方法

获取原文
获取原文并翻译 | 示例

摘要

Current global leaf area index (LAI) products are generally produced from single-temporal satellite observations acquired by a single sensor. These LAI products are usually spatiotemporally discontinuous and inaccurate for some vegetation types in many areas, which limit the applications of these LAI products to the understanding of land dynamics. In this paper, a new data assimilation method was proposed to estimate multiscale and temporally continuous LAI values from multi-sensor time-series satellite observations with different spatial resolutions. An ensemble multiscale tree (EnMsT) was used to establish the conversion relationships between different spatial resolution LAI values, and dynamic models of the LAI at different spatial scales were constructed to evolve LAI at the corresponding spatial scales over time. At each time step, a multiscale Kalman filter (MKF) was introduced to fuse the predicted LAI values from the dynamic models at different spatial scales and to construct a forecasted EnMsT. When satellite observations were available, an ensemble multiscale filter (EnMsF) technique was applied to update the LAI values at each node of the EnMsT. The method was applied to estimate temporally continuous multiscale LAI values from the time series of Thematic Mapper (TM) or Enhanced Thematic Mapper Plus (ETM) surface reflectance data and Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance data at several sites with different vegetation types. The estimated multiscale LAI values were compared with the MODIS and GEOV2 LAI products, and the reference LAI values at the corresponding scales aggregated from the high-resolution LAI surface images. The estimated LAI values with the finest spatial resolution were also validated by ground measurements from the selected sites. The results show that the new method is able to simultaneously estimate temporally continuous multiscale LAI values by assimilating satellite observations with different spatial resolutions, and the estimated multiscale LAI values are well consistent with the reference LAI values at the corresponding scales over the selected sites. The root-mean-square error (RMSE) and coefficient of determination of the retrieved LAI values at the finest spatial scale against the ground measurements over the selected sites are 0.539 and 0.788, respectively.
机译:当前的全球叶面积指数(LAI)产品通常是由单个传感器获得的单时卫星观测结果产生的。这些LAI产品通常在时空上是不连续的,并且在许多地区对于某些植被类型来说都是不准确的,这限制了这些LAI产品在了解土地动态方面的应用。本文提出了一种新的数据同化方法,用于从具有不同空间分辨率的多传感器时间序列卫星观测中估计多尺度和时间连续的LAI值。使用集成多尺度树(EnMsT)建立不同空间分辨率LAI值之间的转换关系,并构建不同空间尺度下LAI的动态模型以随着时间的推移在相应空间尺度上演化LAI。在每个时间步长处,都引入了多尺度卡尔曼滤波器(MKF),以融合来自动态模型在不同空间尺度上的预测LAI值,并构建预测的EnMsT。当卫星观测可用时,采用集成多尺度滤波器(EnMsF)技术更新EnMsT每个节点的LAI值。该方法适用于从具有不同植被类型的多个地点的主题映射器(TM)或增强型主题映射器(ETM)表面反射率数据和中分辨率成像光谱仪(MODIS)表面反射率数据的时间序列估计时间连续多尺度LAI值。将估计的多尺度LAI值与MODIS和GEOV2 LAI产品进行比较,并从高分辨率LAI表面图像中聚合相应尺度下的参考LAI值。具有最佳空间分辨率的估计LAI值也通过选定站点的地面测量结果进行了验证。结果表明,该新方法能够通过同化具有不同空间分辨率的卫星观测值,同时估算时间上连续的多尺度LAI值,并且所估计的多尺度LAI值与所选地点在相应尺度上的参考LAI值非常一致。相对于所选站点上的地面测量值,在最佳空间尺度上检索到的LAI值的均方根误差(RMSE)和确定系数分别为0.539和0.788。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号