首页> 外文会议>International Geoscience and Remote Sensing Symposium >A data assimilation approach for simultaneously estimating a suite of land surface variables from satellite data
【24h】

A data assimilation approach for simultaneously estimating a suite of land surface variables from satellite data

机译:一种数据同化方法,可同时根据卫星数据估算一组陆地表面变量

获取原文

摘要

After over two decade of efforts, many land products are now being produced systematically from a variety of satellite data, and these products have been widely used. However, estimating a set of atmospheric and surface variables from one sensor data is often an ill-posed inversion problem, because the number of unknowns is often larger than the available bands[1]. Thus, one has to make assumptions while trying to obtain realistic solutions, and as a result, most products still need significant improvements of quality and accuracy. Although the average accuracy may be acceptable, the error of each product can be very large under certain conditions. Furthermore, different products of land variables from different inversion algorithms are physically inconsistent for most cases. Many products in the current form are not suitable for climate study because the products are not continuous both spatially and temporally due to factors such as clouds. There is an urgent need to develop more advanced new inversion methods and produce more accurate products. We have recently proposed a data assimilation approach to estimate an improved suite of products from one or multiple satellite data. The general idea is to use the surface and atmospheric radiation models with parameters that are adjusted to optimally reproduce the spectral radiance received by the EOS sensors. Such adjustments are usually made by identifying reasonably close “first guesses” for the model parameters and determining statistically optimum estimates of the parameters by giving appropriate weights to the first guesses versus addition to the error increments needed to get agreement with the observations. The first guesses are the multiple years MODIS/MISR land product climatologies. The best estimate at present time is a climatological value corrected by some combinations of previous time's departure from climatology weighted using temporal autocorrelation and what it takes to fit present observations. The presentation will review this approach and also introduce three case studies[2-4]. Case one [3] estimated only leaf area index (LAI) by integrating temporal, spectral, and angular information from Moderate Resolution Imaging Spectroradiometer (MODIS), SPOT/VEGETATION, and Multi-angle Imaging Spectroradiometer (MISR) data based on an ensemble Kalman filter (EnKF) technique. Validation results at six sites demonstrate that the combination of temporal information from multiple sensors, spectral information provided by red and near-infrared (NIR) bands, and angular information from MISR bidirectional reflectance factor (BRF) data can provide a more accurate estimate of LAI than previously available. Case two [2] estimated temporally complete land-surface parameter profiles from MODIS time-series reflectance data also based on the EnKF technique. The products include LAI, the fraction of absorbed photosynthetically active radiation (FAPAR) and surface broadband albedo. The LAI/FAPAR and surface albedo values estimated using this framework were compared with MODIS collection 5 eight-day 1-km LAI/FAPAR products (MOD15A2) and 500-m surface albedo product (MCD43A3), and GEOV1 LAI/FAPAR products at 1/112. spatial resolution and a ten-day frequency, respectively, and validated by ground measurement data from several sites with different vegetation types. The results demonstrate that this new data assimilation framework can estimate temporally complete land-surface parameter profiles from MODIS time-series reflectance data even if some of the reflectance data are contaminated by residual cloud or are missing and that the retrieved LAI, FAPAR, and surface albedo values are physically consistent. The root mean square errors of the retrieved LAI, FAPAR, and surface albedo against ground measurements are 0.5791, 0.0453, and 0.0190, respectively. Case three [4] further estimated multiple land surface parameters and aerosol optical depth (AOD) from MODIS top-of-atmosphere (TOA) reflectance data without relying on atmospheric correction. Soil, vegetation canopy, and atmospheric radiative transfer models were coupled. LAI and AOD were estimated first and the coupled model then calculated land surface reflectance, incident photosynthetically active radiation (PAR), land surface albedo, and the FAPAR. The flowchart is shown in Fig. 1. The retrieved land surface parameters and AOD were compared with the corresponding MODIS, Global Land Surface Satellite (GLASS), GEOV1, and MISR products and validated by ground measurements from seven sites with different vegetation types. The results demonstrated that the new inversion method can effectively produce multiple physically consistent parameters with accuracy comparable to that of existing satellite products over the select sites (Figure 2).
机译:经过二十多年的努力,现在正在利用各种卫星数据系统地生产许多陆地产品,并且这些产品已得到广泛使用。然而,从一个传感器数据估计一组大气和地表变量通常是一个不适定的反演问题,因为未知数通常大于可用波段[1]。因此,在尝试获得现实的解决方案时必须做出假设,结果,大多数产品仍需要质量和准确性的显着提高。尽管平均精度是可以接受的,但是在某些条件下每种产品的误差可能会非常大。此外,在大多数情况下,来自不同反演算法的土地变量的不同乘积在物理上是不一致的。当前形式的许多产品不适合气候研究,因为由于诸如云等因素,产品在空间和时间上都不连续。迫切需要开发更先进的新反演方法并生产更准确的产品。我们最近提出了一种数据同化方法,可以从一个或多个卫星数据中估算出一套改进的产品。总体思路是使用具有参数调整的表面和大气辐射模型,以最佳方式重现EOS传感器接收的光谱辐射。通常通过为模型参数确定合理接近的“第一猜测”,并通过对第一猜测赋予适当的权重以及为获得与观测值一致所需的误差增量的权重来确定参数的统计最优估计,来进行此类调整。最初的猜测是多年的MODIS / MISR土地产品气候。当前最好的估计是通过使用时间自相关加权的先前时间偏离气候学的一些组合以及适合当前观测值的气候组合来校正的气候值。演讲将回顾这种方法,并介绍三个案例研究[2-4]。案例1 [3]通过基于集合卡尔曼的中分辨率成像光谱仪(MODIS),SPOT / VEGETATION和多角度成像光谱仪(MISR)数据,通过整合时间,光谱和角度信息,仅估计了叶面积指数(LAI)。过滤器(EnKF)技术。在六个地点的验证结果表明,来自多个传感器的时间信息,由红色和近红外(NIR)波段提供的光谱信息以及来自MISR双向反射因子(BRF)数据的角度信息的组合可以提供更准确的LAI估计值比以前的可用。案例二[2]也是基于EnKF技术从MODIS时间序列反射率数据估计的时间上完整的地表参数剖面。这些产品包括LAI,吸收的光合有效辐射(FAPAR)和表面宽带反照率。将使用此框架估算的LAI / FAPAR和地面反照率值与MODIS收集的5天1公里LAI / FAPAR产品(MOD15A2)和500米地面反照率产品(MCD43A3)以及GEOV1 LAI / FAPAR产品进行比较,得出1 / 112。空间分辨率和十天频率,并通过来自具有不同植被类型的多个地点的地面测量数据进行了验证。结果表明,即使某些反射率数据被残留云污染或丢失,并且检索到的LAI,FAPAR和地表,该新的数据同化框架也可以从MODIS时间序列反射率数据中估算时间上完整的陆地表面参数剖面。反照率值在物理上是一致的。检索到的LAI,FAPAR和表面反照率相对于地面测量的均方根误差分别为0.5791、0.0453和0.0190。案例三[4]进一步根据MODIS的大气顶(TOA)反射率数据估算了多个陆地表面参数和气溶胶光学深度(AOD),而无需依靠大气校正。耦合了土壤,植被冠层和大气辐射传输模型。首先估计LAI和AOD,然后使用耦合模型计算出地表反射率,入射光合有效辐射(PAR),地表反照率和FAPAR。流程图如图1所示。将检索到的地面参数和AOD与相应的MODIS,全球地面卫星(GLASS),GEOV1和MISR产品进行比较,并通过对七个具有不同植被类型的地点的地面测量进行了验证。结果表明,新的反演方法可以有效地产生多个物理上一致的参数,其准确度可与选定地点上现有卫星产品的准确度相媲美(图2)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号