首页> 外文OA文献 >Solving Mixed-Integer Quadratic Programs via Nonnegative Least Squares
【2h】

Solving Mixed-Integer Quadratic Programs via Nonnegative Least Squares

机译:用非负最小二乘法求解混合整数二次规划

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper proposes a new algorithm for solving Mixed-Integer Quadratic Programming (MIQP) problems. The algorithm is particularly tailored to solving small-scale MIQPs such as those that arise in embedded hybrid Model Predictive Control (MPC) applications. The approach combines branch and bound (B&B) with nonnegative least squares (NNLS), that are used to solve Quadratic Programming (QP) relaxations. The QP algorithm extends a method recently proposed by the author for solving strictly convex QP's, by (i) handling equality and bilateral inequality constraints, (ii) warm starting, and (iii) exploiting easy-to-compute lower bounds on the optimal cost to reduce the number of QP iterations required to solve the relaxed problems. The proposed MIQP algorithm has a speed of execution that is comparable to state- of-the-art commercial MIQP solvers and is relatively simple to code, as it requires only basic arithmetic operations to solve least-square problems.
机译:本文提出了一种解决混合整数二次规划(MIQP)问题的新算法。该算法特别适合解决小规模MIQP,例如在嵌入式混合模型预测控制(MPC)应用中出现的那些MIQP。该方法将分支定界(B&B)与非负最小二乘(NNLS)结合在一起,用于解决二次规划(QP)松弛。 QP算法扩展了作者最近提出的用于解决严格凸QP的方法,方法是:(i)处理平等和双边不平等约束,(ii)热启动,(iii)利用易于计算的最优成本下限减少解决宽松问题所需的QP迭代次数。提出的MIQP算法的执行速度可与最新的商业MIQP求解器相媲美,并且编码相对简单,因为它只需要基本的算术运算即可解决最小二乘问题。

著录项

  • 作者

    Bemporad Alberto;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号