首页> 外文OA文献 >Interval Methods for Data Fitting under Uncertainty: A Probabilistic Treatment
【2h】

Interval Methods for Data Fitting under Uncertainty: A Probabilistic Treatment

机译:不确定性下数据拟合的区间方法:概率处理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

How to estimate parameters from observations subject to errors and uncertainty? Very often, the measurement errors are random quantities that can be adequately described by the probability theory. When we know that the measurement errors are normally distributed with zero mean, then the (asymptotically optimal) Maximum Likelihood Method leads to the popular least squares estimates. In many situations, however, we do not know the shape of the error distribution, we only know that the measurement errors are located on a certain interval. Then the maximum entropy approach leads to a uniform distribution on this interval, and the Maximum Likelihood Method results in the so-called minimax estimates. We analyse specificity and drawbacks of the minimax estimation under essential interval uncertainty in data and discuss possible ways to solve the difficulties. Finally, we show that, for the linear functional dependency, the minimax estimates motivated by the Maximum Likelihood Method coincide with those produced by the Maximum Consistency Method that originate from interval analysis.
机译:如何根据存在误差和不确定性的观测值估算参数?通常,测量误差是可以由概率论充分描述的随机量。当我们知道测量误差以零均值正态分布时,(渐近最优)最大似然法将得出流行的最小二乘估计。但是,在许多情况下,我们不知道误差分布的形状,只知道测量误差位于一定的间隔内。然后,最大熵方法导致在该间隔上的均匀分布,并且最大似然法得出所谓的最小极大值估计。我们分析了在数据的基本区间不确定性下极小极大估计的特殊性和缺点,并讨论了解决困难的可能方法。最后,我们表明,对于线性函数相关性,由最大似然法激发的极小极大估计值与由区间分析得出的由最大一致性方法产生的估计值一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号