首页> 外文OA文献 >Monte-Carlo-Type Techniques for Processing Interval Uncertainty, and Their Geophysical and Engineering Applications
【2h】

Monte-Carlo-Type Techniques for Processing Interval Uncertainty, and Their Geophysical and Engineering Applications

机译:蒙特卡罗型区间不确定性处理技术及其地球物理和工程应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To determine the geophysical structure of a region, we measure seismic travel times and reconstruct velocities at different depths from this data. There are several algorithms for solving this inverse problem, but these algorithms do not tell us how accurate these reconstructions are.Traditional approach to accuracy estimation assumes that the measurement errors are independently normally distributed. Problem: the resulting accuracies are not in line with geophysical intuition. Reason: a typical error is when we miss the first arrival of the seismic wave; it is not normal (bounded by the wave period T) and not independent.Typically, all we know is the upper bound D on the measurement error, so when the measured value is X, we conclude that x is in [X-D,X+D]. For this interval uncertainty, the resulting velocity accuracy is, qualitatively, in much better accordance with geophysics.Interval uncertainty naturally appears in other applications as well. In this paper, we describe Monte-Carlo-Type techniques for processing interval uncertainty, and their geophysical and engineering applications.
机译:为了确定一个地区的地球物理结构,我们测量了地震的传播时间,并根据该数据重建了不同深度的速度。有几种算法可以解决这个逆问题,但是这些算法并不能告诉我们这些重构的准确性。传统的精度估计方法假设测量误差是独立正态分布的。问题:由此产生的精度与地球物理直觉不一致。原因:一个典型的错误是我们错过了地震波的首次到达;通常,我们所知道的只是测量误差的上限D,因此,当测量值为X时,我们得出结论:x在[XD,X + D]。对于这种间隔不确定性,定性的结果是速度精度在质量上更好地符合地球物理学。间隔不确定性自然也出现在其他应用中。在本文中,我们描述了用于处理区间不确定性的蒙特卡洛类型技术及其地球物理和工程应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号