首页> 外文OA文献 >Gypsy moths (Lymantria dispar) in the Niagara Region : population density variation, introduction of an entomopathogenic fungus (Entomophaga maimaiga) and occurrence of nuclear polyhedrosis virus
【2h】

Gypsy moths (Lymantria dispar) in the Niagara Region : population density variation, introduction of an entomopathogenic fungus (Entomophaga maimaiga) and occurrence of nuclear polyhedrosis virus

机译:尼亚加拉地区的吉普赛飞蛾(Lymantria dispar):种群密度变异,昆虫病原真菌(Entomophaga maimaiga)的引入和核多角体病毒的发生

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The gypsy moth, Lymantria dispar, a major defoliator ofbroad leaf trees, was accidentally introduced into North America in1869. Much interest has been generated regarding the potential ofusing natural pathogens for biological control of this insect. One ofthese pathogens, a highly specific fungus, Entomophaga maimaiga, wasaccredited with causing major epizootics in populations of gypsy mothacross the north-eastern United States in 1989 and 1990 and isthought to be spreading northwards into Canada. This study examinedgypsy moth population densities in the Niagara Region. The fungus, .E..maimaiga, was artificially introduced into one site and the resultingmortality in host populations was noted over two years. Therelationship between fungal mortality, host population density andoccurrence of another pathogen, the nuclear polyhedrosis virus (NPV),was assessed.Gypsy moth population density was assessed by counting eggmasses in 0.01 hectare (ha) study plots in six areas, namely Louth,Queenston, Niagara-on-the-Lake, Shorthills Provincial Park, ChippawaCreek and Willoughby Marsh. High variability in density was seenamong sites. Willoughby Marsh and Chippawa Creek, the sites with thegreatest variability, were selected for more intensive study.The pathogenicity of E. maimaiga was established in laboratorytrials. Fungal-infected gypsy moth larvae were then released intoexperimental plots of varying host density in Willoughby Marsh in1992. These larvae served as the inoculum to infect field larvae.Other larvae were injected with culture medium only and released intocontrol plots also of varying host density. Later, field larvae werecollected and assessed for the presence of .E.. maimaiga and NPV. Agreater proportion of larvae were infected from experimental plotsthan from control plots indicating that the experimental augmentationhad been successful. There was no relationship between host densityand the proportion of infected larvae in either experimental or controlplots. In 1992, 86% of larvae were positive for NPV. Presence andintensity of NPV infection was independent of fungal presence, plottype or interaction of these two factors.Sampling was carried out in the summer of 1993, the year afterthe introduction, to evaluate the persistence of the pathogen in theenvironment. Almost 50% of all larvae were infected with the fungus.There was no difference between control and experimental plots. Datacollected from Willoughby Marsh indicated that there was nocorrelation between the proportion of larvae infected with the fungusand host population density in either experimental or control plots.About 10% of larvae collected from a nearby site, Chippawa Creek,were also positive for .E.. maimaiga suggesting that low levels of .E..maimaiga probably occurred naturally in the area. In 1993, 9.6% oflarvae were positive for NPV. Again, presence or absence of NPVinfection was independent of fungal presence plot type or interactionof these two factors.In conclusion, gypsy moth population densities were highlyvariable between and within sites in the Niagara Region. Theintroduction of the pathogenic fungus, .E.. maimaiga, into WilloughbyMarsh in 1992 was successful and the fungus was again evident in1993. There was no evidence for existence of a relationship betweenfungal mortality and gypsy moth density or occurrence of NPV. Theresults from this study are discussed with respect to the use of .E..maimaiga in gypsy moth management programs.
机译:吉普赛蛾Lymantria dispar是阔叶树的主要落叶者,于1869年被意外引入北美。关于使用天然病原体对该昆虫进行生物学控制的潜力,已经引起了很多兴趣。这些病原体之一是高度特异性的真菌Entomophaga maimaiga,经鉴定可在1989年和1990年在美国东北部吉普赛人的种群中引起重大流行病,并被认为向北扩散到加拿大。这项研究调查了尼亚加拉大区吉卜赛蛾的种群密度。将真菌E..maimaiga人工引入一个地点,并指出在两年内造成的宿主种群死亡。评估了真菌死亡率,寄主种群密度与另一种病原体核多角体病毒(NPV)的发生之间的关系。吉普赛蛾种群密度通过计算0.01公顷(ha)研究区中6个地区(Louth,Queenston,滨湖尼亚加拉,肖特希尔斯省立公园,奇帕瓦河和威洛比沼泽。在站点之间发现密度变化很大。选择威拉比沼泽(Willoughby Marsh)和奇帕瓦河(Chippawa Creek)这两个具有最大变异性的地点进行更深入的研究。然后在1992年Willoughby Marsh将真菌感染的吉普赛蛾幼虫释放到不同寄主密度的实验区中。这些幼虫作为感染田间幼虫的接种物。其他幼虫仅注射培养基,并释放到也具有不同寄主密度的对照地块中。之后,收集田间幼虫并评估是否存在... maimaiga和NPV。实验区感染的幼虫比例高于对照区,表明该实验成功进行。在实验或对照图中,宿主密度和感染幼虫的比例之间没有关系。 1992年,有86%的幼虫NPV呈阳性。 NPV感染的发生和强度与真菌的存在,地块类型或​​这两个因素的相互作用无关。在引入后的第二年(1993年夏季)进行采样,以评估病原体在环境中的持久性。所有幼虫中几乎有50%被真菌感染,对照样田和实验样田之间没有差异。从Willoughby Marsh收集的数据表明,无论是实验区还是对照区,感染真菌的幼虫比例与寄主种群密度之间均无相关性。从附近站点Chippawa Creek收集的幼虫中约有10%的E.呈阳性。 maimaiga暗示该地区可能自然发生低水平的.E..maimaiga。 1993年,有9.6%的幼虫NPV阳性。同样,NPV感染的存在与否与真菌的存在图类型或这两个因素的相互作用无关。总而言之,在尼亚加拉大区的地点之间和之内,吉卜赛蛾种群密度变化很大。 1992年成功地将致病性真菌埃希氏菌(E .. maimaiga)引入WilloughbyMarsh,1993年又再次证明了这种真菌。没有证据表明真菌死亡率与吉卜赛蛾密度或NPV的发生之间存在关系。讨论了有关.E..maimaiga在吉普赛蛾管理程序中的使用情况的研究结果。

著录项

  • 作者

    Belme Dayle M.;

  • 作者单位
  • 年度 1995
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号