首页> 外文OA文献 >Spectroscopic methods of process monitoring for safeguards of used nuclear fuel separations
【2h】

Spectroscopic methods of process monitoring for safeguards of used nuclear fuel separations

机译:用于保护废旧核燃料分离的过程监测的光谱方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To support the demonstration of a more proliferation-resistant nuclear fuel processing plant, techniques and instrumentation to allow the real-time, online determination of special nuclear material concentrations in-process must be developed. An ideal materials accountability technique for proliferation resistance should provide nondestructive, realtime, on-line information of metal and ligand concentrations in separations streams without perturbing the process. UV-Visible spectroscopy can be adapted for this precise purpose in solvent extraction-based separations.The primary goal of this project is to understand fundamental URanium EXtraction (UREX) and Plutonium-URanium EXtraction (PUREX) reprocessing chemistry and corresponding UV-Visible spectroscopy for application in process monitoring for safeguards. By evaluating the impact of process conditions, such as acid concentration, metal concentration and flow rate, on the sensitivity of the UV-Visible detection system, the process-monitoring concept is developed from an advanced application of fundamental spectroscopy. Systematic benchtop-scale studies investigated the system relevant to UREX or PUREX type reprocessing systems, encompassing 0.01-1.26 M U and 0.01-8 M HNO 3 . A laboratory-scale TRansUranic Extraction (TRUEX) demonstration was performed and used both to analyze for potential online monitoring opportunities in the TRUEX process, and to provide the foundation for building and demonstrating a laboratory-scale UREX demonstration.The secondary goal of the project is to simulate a diversion scenario in UREX and successfully detect changes in metal concentration and solution chemistry in a counter current contactor system with a UV-Visible spectroscopic process monitor. UREX uses the same basic solvent extraction flowsheet as PUREX, but has a lower acid concentration throughout and adds acetohydroxamic acid (AHA) as a complexant/reductant to the feed solution to prevent the extraction of Pu. By examining UV-Visible spectra gathered in real time, the objective is to detect the conversion from the UREX process, which does not separate Pu, to the PUREX process, which yields a purified Pu product. The change in process chemistry can be detected in the feed solution, aqueous product or in the raffinate stream by identifying the acid concentration, metal distribution and the presence or absence of AHA. A fiber optic dip probe for UV-Visible spectroscopy was integrated into a bank of three counter-current centrifugal contactors to demonstrate the online process monitoring concept. Nd, Fe and Zr were added to the uranyl nitrate system to explore spectroscopic interferences and identify additional species as candidates for online monitoring. This milestone is a demonstration of the potential of this technique, which lies in the ability to simultaneously and directly monitor the chemical process conditions in a reprocessing plant, providing inspectors with another tool to detect nuclear material diversion attempts.Lastly, dry processing of used nuclear fuel is often used as a head-end step before solvent extraction-based separations such as UREX or TRUEX. A non-aqueous process, used fuel treatment by dry processing generally includes chopping of used fuel rods followed by repeated oxidation-reduction cycles and physical separation of the used fuel from the cladding. Thus, dry processing techniques are investigated and opportunities for online monitoring are proposed for continuation of this work in future studies.
机译:为了支持对更具扩散性的核燃料加工厂的示范,必须开发允许实时在线在线确定过程中特殊核材料浓度的技术和仪器。理想的抗扩散材料责任技术应在不干扰过程的情况下提供分离流中金属和配体浓度的非破坏性实时信息。紫外-可见光谱法可适用于基于溶剂萃取的分离中的这一精确目的。该项目的主要目的是了解基本的铀萃取(UREX)和P-铀萃取(PUREX)后处理化学方法以及用于紫外萃取的相应光谱在过程监控中用于保障的应用。通过评估工艺条件(例如酸浓度,金属浓度和流速)对紫外可见检测系统灵敏度的影响,从基本光谱学的先进应用中发展了工艺监控概念。系统的台式研究研究了与UREX或PUREX型后处理系统有关的系统,包括0.01-1.26 M U和0.01-8 M HNO 3。进行了实验室规模的TRansUranic Extraction(TRUEX)演示,并用于分析TRUEX流程中潜在的在线监测机会,并为构建和演示实验室规模的UREX演示提供了基础。该项目的第二个目标是可以在UREX中模拟转移场景,并使用UV-可见光谱过程监控器在逆流接触器系统中成功检测金属浓度和溶液化学变化。 UREX使用与PUREX相同的基本溶剂萃取流程图,但整个酸浓度较低,并向进料溶液中添加乙酰氧肟酸(AHA)作为络合剂/还原剂,以防止Pu的萃取。通过检查实时收集的紫外可见光谱,目的是检测从不分离Pu的UREX工艺到产生纯Pu产品的PUREX工艺的转化。可以通过确定酸浓度,金属分布以及是否存在AHA来检测进料溶液,水溶液或提余液中过程化学的变化。将用于紫外-可见光谱的光纤浸入式探头集成到一组三个逆流离心接触器中,以演示在线过程监控概念。将Nd,Fe和Zr添加到硝酸铀酰系统中,以探索光谱干扰并确定其他物种作为在线监测的候选对象。这个里程碑证明了这项技术的潜力,在于能够同时直接监测后处理厂的化学工艺条件,从而为检查员提供了另一种检测核材料转移尝试的工具。在基于溶剂萃取的分离(例如UREX或TRUEX)之前,燃料通常被用作起始步骤。在非水处理中,通过干法处理废燃料通常包括切碎废燃料棒,然后重复进行氧化还原循环以及将废燃料与覆层进行物理分离。因此,对干法加工技术进行了研究,并提出了在线监测的机会,以在将来的研究中继续进行这项工作。

著录项

  • 作者

    Warburton Jamie Lee;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号