首页> 外文OA文献 >Study of Machine Learning Methods in Intelligent Transportation Systems
【2h】

Study of Machine Learning Methods in Intelligent Transportation Systems

机译:智能交通系统中机器学习方法的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Machine learning and data mining are currently hot topics of research and are applied in database, artificial intelligence, statistics, and so on to discover valuable knowledge and the patterns in big data available to users. Data mining is predominantly about processing unstructured data and extracting meaningful information from them for end users to help take business decisions. Machine learning techniques use mathematical algorithms to find a pattern or extract meaning out from big data. The popularity of such techniques in analyzing business problems has been enhanced by the arrival of big data.The main objective of this thesis is to study the importance of big data and machine learning and their impact on transportation industry. This thesis is primarily a review of the important machine learning algorithms and their applications in the field of big data. The author has tried to showcase the need to extract meaningful information from the vast amount of big data in the form of traffic data available in today’s world and also listed different machine learning techniques that can be used to extract this knowledge required in order to facilitate better decision making for transportation applications.The analysis is done by using five different multivariate analysis and machine learning techniques in data mining namely cluster analysis, multivariate linear regression, hierarchical multiple regression, factor analysis and discriminant analysis in two different software packages namely SPSS and R. As part of the analysis, the author has tried to explain how knowledge extracted from random traffic data containing variables such as age of the driver, sex of the driver, the day of the week, atmospheric condition and blood alcohol content of the driver can play an important role in predicting the traffic crash. The data taken into account is accident data, which was obtained from Fatality Analysis Reporting System (FARS) ranging from the year 1999 to 2009. It is concluded that traffic accidents were mostly impacted by the atmospheric conditions, blood alcohol content followed by the day of the week.
机译:机器学习和数据挖掘是当前研究的热门话题,并应用于数据库,人工智能,统计等领域,以发现有价值的知识和用户可用的大数据模式。数据挖掘主要是关于处理非结构化数据并从中提取有意义的信息供最终用户使用,以帮助他们做出业务决策。机器学习技术使用数学算法来查找模式或从大数据中提取含义。随着大数据的到来,这种技术在分析业务问题中的普及也得到了增强。本文的主要目的是研究大数据和机器学习的重要性及其对运输行业的影响。本文主要回顾了重要的机器学习算法及其在大数据领域中的应用。作者试图展示以当今世界上可用的交通数据的形式从大量大数据中提取有意义的信息的必要性,并且还列出了可用于提取所需知识以促进更好地发展的各种机器学习技术。通过在数据挖掘中使用五种不同的多元分析和机器学习技术(即聚类分析,多元线性回归,分层多元回归,因子分析和判别分析)在两种不同的软件包SPSS和R中进行分析。作为分析的一部分,作者尝试解释了如何从随机交通数据中提取的知识如何发挥作用,这些变量包括驾驶员的年龄,驾驶员的性别,星期几,大气状况和驾驶员的血液酒精含量在预测交通事故中起着重要作用。考虑到的数据是事故数据,该数据是从致命性分析报告系统(FARS)从1999年到2009年获得的。得出的结论是,交通事故主要受到大气条件,血液中酒精含量以及随后的一天的影响。星期。

著录项

  • 作者

    Jha Vishal;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号