首页> 外文OA文献 >Top-K Nodes Identification in Big Networks Based on Topology and Activity Analysis
【2h】

Top-K Nodes Identification in Big Networks Based on Topology and Activity Analysis

机译:基于拓扑和活动分析的大网络中的前K个节点识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Graphs and Networks have been the most researched topics with applications ranging from theoretical to practical fields, such as social media, genetics, and education. In many competitive environments, the most productive activities may be interacting with high-profile people, reading a much-cited article, or researching a wide range of fields such as the study on highly connected proteins. This thesis proposes two methods to deal with top-K nodes identification: centrality-based and activity-based methods for identifying top-K nodes. The first method is based on the topological structure of the network and uses the centrality measure called Katz Centrality; a path based ranking measure that calculates the local influence of a node as well as its global influence. It starts by filtering out the top-K nodes from a pool of network data using Katz Centrality. By providing a means to filter out unnecessary nodes based on their centrality values, one can focus more on the most important nodes. The proposed method was applied to various network data and the results showed how different parameter values lead to different numbers of top-K nodes. The second method incorporates the theory of heat diffusion. Each node in the network can act as the source of heat. The amount of heat diffused or received by the node depends on the number of activities it performs. There are two types of activities: Interactive and Non-Interactive. Interactive activities could be likes, comments, and shares whereas posting a status, tweets or pictures could be the examples of non-interactive activities. We applied these proposed methods on Instagram network data and compared the results with the other similar algorithms. The experiment results showed that our activity-based approach is much faster and accurate than the existing methods.Images referenced in this thesis are included in the supplementary files.
机译:图形和网络一直是研究最多的主题,其应用范围从理论到实践领域,例如社交媒体,遗传学和教育。在许多竞争性环境中,最富有成效的活动可能是与知名人士互动,阅读引文多次或研究广泛的领域,例如研究高度连接的蛋白质。本文提出了两种识别top-K节点的方法:基于集中度和基于活动的top-K节点识别方法。第一种方法基于网络的拓扑结构,并使用称为“ Katz中心性”的中心性度量。基于路径的排名度量,可计算节点的局部影响力及其全局影响力。首先使用Katz Centrality从网络数据池中筛选出前K个节点。通过提供一种根据不必要的节点的中心值来过滤掉不必要的节点的方法,可以将更多的注意力集中在最重要的节点上。将该方法应用于各种网络数据,结果表明不同的参数值如何导致不同数量的top-K节点。第二种方法结合了热扩散理论。网络中的每个节点都可以充当热源。节点散布或接收的热量取决于其执行的活动数量。有两种类型的活动:交互式和非交互式。互动活动可能是喜欢,评论和分享,而张贴状态,推文或图片可能是非互动活动的示例。我们将这些建议的方法应用于Instagram网络数据,并将结果与​​其他类似算法进行比较。实验结果表明,我们的基于活动的方法比现有的方法更快,更准确。本文引用的图像包含在补充文件中。

著录项

  • 作者

    Gurung Sweta;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号