首页> 外文OA文献 >Anisotropy of the Reynolds Stress Tensor in the Wakes of Wind turbine Arrays in Cartesian Arrangements with Counter-Rotating Rotors
【2h】

Anisotropy of the Reynolds Stress Tensor in the Wakes of Wind turbine Arrays in Cartesian Arrangements with Counter-Rotating Rotors

机译:反转转子笛卡尔布置中风力机阵列尾迹雷诺应力张量的各向异性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A 4 × 3 wind turbine array in a Cartesian arrangement was constructed in a wind tunnel setting with four configurations based on the rotational sense of the rotor blades. The fourth row of devices is considered to be in the fully developed turbine canopy for a Cartesian arrangement. Measurements of the flow field were made with stereo particle-image velocimetry immediately upstream and downstream of the selected model turbines. Rotational sense of the turbine blades is evident in the mean spanwise velocity W and the Reynolds shear stress −vw. The flux of kinetic energy is shown to be of greater magnitude following turbines in arrays where direction of rotation of the blades varies. Invariants of the normalized Reynolds stress anisotropy tensor (η and ξ) are plotted in the Lumley triangle and indicate that distinct characters of turbulence exist in regions of the wake following the nacelle and the rotor blade tips. Eigendecomposition of the tensor yields principle components and corresponding coordinate system transformations. Characteristic spheroids representing the balance of components in the normalized anisotropy tensor are composed with the eigenvalues yielding shapes predicted by the Lumley triangle. Rotation of the coordinate system defined by the eigenvectors demonstrates trends in the streamwise coordinate following the rotors, especially trailing the top-tip of the rotor and below the hub. Direction of rotation of rotor blades is shown by the orientation of characteristic spheroids according to principle axes. In the inflows of exit row turbines, the normalized Reynolds stress anisotropy tensor shows cumulative effects of the upstream turbines, tending toward prolate shapes for uniform rotational sense, oblate spheroids for streamwise organization of rotational senses, and a mixture of characteristic shapes when the rotation varies by row. Comparison between the invariants of the Reynolds stress anisotropy tensor and terms from the mean mechanical energy equation indicate correlation between the degree of anisotropy and the regions of the wind turbine wakes where turbulence kinetic energy is produced. The flux of kinetic energy into the momentum-deficit area of the wake from above the canopy is associated with prolate characteristic spheroids. Flux upward into the wake from below the rotor area is associated with oblate characteristic spheroids. Turbulence in the region of the flow directly following the nacelle of the wind turbines demonstrates greater isotropy than regions following the rotor blades. The power and power coefficients for wind turbines indicate that flow structures on the order of magnitude of the spanwise turbine spacing that increase turbine efficiency depending on particular array configuration.
机译:根据转子叶片的旋转方向,在风洞环境中以四种构造构造了笛卡尔布置的4×3风力涡轮机阵列。第四排设备被认为是在笛卡尔布置的完全发展的涡轮机盖中。流场的测量是在选定的模型涡轮机的紧靠上游和下游使用立体粒子图像测速仪进行的。涡轮叶片的旋转方向在平均翼展方向速度W和雷诺剪切应力-vw上很明显。在叶片排列方向变化的阵列中的涡轮机之后,动能通量显示出更大的幅度。在Lumley三角形中绘制了归一化雷诺应力各向异性张量(η和ξ)的不变性,表明在机舱和转子叶片尖端之后的尾流区域中存在明显的湍流特征。张量的本征分解产生主成分和相应的坐标系变换。代表标准化各向异性张量中各组成部分平衡的特征球体由特征值组成,这些特征值产生了由Lumley三角形预测的形状。由特征向量定义的坐标系的旋转表明了跟随转子的流向坐标的趋势,尤其是在转子的顶部末端和轮毂下方。转子叶片的旋转方向由特性球体根据主轴的方向表示。在出口排汽轮机的流入中,归一化的雷诺应力各向异性张量显示了上游汽轮机的累积效应,趋向于呈扁长形状以实现均匀的旋转方向,趋于扁球状以顺流方式组织旋转方向,以及当旋转变化时具有特征形状的混合按行。雷诺应力各向异性张量的不变量与平均机械能方程的项之间的比较表明,各向异性程度与风力涡轮机尾流产生湍动能的区域之间具有相关性。从顶篷上方进入尾流动量不足区域的动能通量与扁长的特征球体相关。从转子区域下方向上进入尾流的通量与扁球形特征椭球相关。紧接着风力涡轮机的机舱之后的流动区域中的湍流显示出比紧随转子叶片的区域更大的各向同性。风力涡轮机的功率系数和功率系数表明,流向结构在翼展方向涡轮机间隔的数量级上会增加涡轮机效率,具体取决于特定的阵列配置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号