首页> 外文OA文献 >Fast On-Line Kernel Density Estimation for Active Object Localization
【2h】

Fast On-Line Kernel Density Estimation for Active Object Localization

机译:主动目标定位的快速在线核密度估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A major goal of computer vision is to enable computers to interpret visual situations—abstract concepts (e.g., “a person walking a dog,” “a crowd waiting for a bus,” “a picnic”) whose image instantiations are linked more by their common spatial and semantic structure than by low-level visual similarity. In this paper, we propose a novel method for prior learning and active object localization for this kind of knowledge-driven search in static images. In our system, prior situation knowledge is captured by a set of flexible, kernel-based density estimations— a situation model—that represent the expected spatial structure of the given situation. These estimations are efficiently updated by information gained as the system searches for relevant objects, allowing the system to use context as it is discovered to narrow the search. More specifically, at any given time in a run on a test image, our system uses image features plus contextual information it has discovered to identify a small subset of training images— an importance cluster—that is deemed most similar to the given test image, given the context. This subset is used to generate an updated situation model in an on-line fashion, using an efficient multipole expansion technique. As a proof of concept, we apply our algorithm to a highly varied and challenging dataset consisting of instances of a “dog-walking” situation. Our results support the hypothesis that dynamically-rendered, context-based probability models can support efficient object localization in visual situations. Moreover, our approach is general enough to be applied to diverse machine learning paradigms requiring interpretable, probabilistic representations generated from partially observed data.
机译:计算机视觉的主要目标是使计算机能够解释视觉实例,这些抽象概念(例如,“ walking狗的人”,“等公交车的人群”,“野餐”)的图像实例化与其相关性更多。常见的空间和语义结构要比低级的视觉相似性高。在本文中,我们提出了一种用于先验学习和主动对象定位的新颖方法,用于这种知识驱动的静态图像搜索。在我们的系统中,先验情况知识是通过一组灵活的,基于核的密度估计(一种情况模型)来捕获的,它们表示给定情况的预期空间结构。这些估计值可以通过系统搜索相关对象时获得的信息来有效地更新,从而使系统可以使用发现的上下文来缩小搜索范围。更具体地说,在测试图像上运行的任何给定时间,我们的系统都会使用图像特征以及已发现的上下文信息来识别训练图像的一小部分(重要性簇),该子集被认为与给定测试图像最为相似,给定上下文。使用有效的多极扩展技术,该子集可用于以在线方式生成更新的情境模型。作为概念证明,我们将我们的算法应用于由“狗走路”情况的实例组成的高度变化且具有挑战性的数据集。我们的结果支持以下假设:动态渲染的基于上下文的概率模型可以支持可视情况下的有效对象定位。而且,我们的方法足够通用,可应用于需要部分观测数据生成的可解释,概率表示的各种机器学习范例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号