首页> 外文OA文献 >Hierarchical Temporal Memory Cortical Learning Algorithm for Pattern Recognition on Multi-core Architectures
【2h】

Hierarchical Temporal Memory Cortical Learning Algorithm for Pattern Recognition on Multi-core Architectures

机译:多核架构模式识别的分层时态记忆皮层学习算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Strongly inspired by an understanding of mammalian cortical structure and function, the Hierarchical Temporal Memory Cortical Learning Algorithm (HTM CLA) is a promising new approach to problems of recognition and inference in space and time. Only a subset of the theoretical framework of this algorithm has been studied, but it is already clear that there is a need for more information about the performance of HTM CLA with real data and the associated computational costs. For the work presented here, a complete implementation of Numentau27s current algorithm was done in C++. In validating the implementation, first and higher order sequence learning was briefly examined, as was algorithm behavior with noisy data doing simple pattern recognition. A pattern recognition task was created using sequences of handwritten digits and performance analysis of the sequential implementation was performed. The analysis indicates that the resulting rapid increase in computing load may impact algorithm scalability, which may, in turn, be an obstacle to widespread adoption of the algorithm. Two critical hotspots in the sequential code were identified and a parallelized version was developed using OpenMP multi-threading. Scalability analysis of the parallel implementation was performed on a state of the art multi-core computing platform. Modest speedup was readily achieved with straightforward parallelization. Parallelization on multi-core systems is an attractive choice for moderate sized applications, but significantly larger ones are likely to remain infeasible without more specialized hardware acceleration accompanied by optimizations to the algorithm.
机译:时空记忆皮质学习算法(HTM CLA)受到对哺乳动物皮质结构和功能的了解的启发,是解决空间和时间识别和推理问题的一种有前途的新方法。仅研究了该算法的理论框架的一个子集,但是很显然,需要更多有关具有实际数据的HTM CLA性能以及相关计算成本的信息。对于此处介绍的工作,使用C ++完成了Numenta当前算法的完整实现。在验证实现时,简要检查了一次和更高阶的序列学习,以及带有噪点数据的算法行为进行简单的模式识别。使用手写数字序列创建了模式识别任务,并对顺序实现的性能进行了分析。分析表明,计算负载的快速增加可能会影响算法的可伸缩性,从而可能反过来阻碍算法的广泛采用。确定了顺序代码中的两个关键热点,并使用OpenMP多线程开发了并行化版本。在最先进的多核计算平台上执行了并行实现的可伸缩性分析。直接并行化很容易实现适度的加速。对于中等规模的应用程序,多核系统上的并行化是一个诱人的选择,但是如果没有更专业的硬件加速以及算法的优化,那么大型应用程序可能仍然不可行。

著录项

  • 作者

    Price Ryan William;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号