首页> 外文OA文献 >A Regression Approach for Estimation of Anthropogenic Heat Flux Based on a Bottom-Up Air Pollutant Emission Database
【2h】

A Regression Approach for Estimation of Anthropogenic Heat Flux Based on a Bottom-Up Air Pollutant Emission Database

机译:基于自下而上大气污染物排放数据库估算人为热通量的回归方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A statistical regression method is presented for estimating hourly anthropogenic heat flux (AHF) using an anthropogenic pollutant emission inventory for use in mesoscale meteorological and air-quality modeling. Based on bottom-up AHF estimated from detailed energy consumption data and anthropogenic pollutant emissions of carbon monoxide (CO) and nitrogen oxides (NOx) in the US National Emission Inventory year 2005 (NEI-2005), a robust regression relation between the AHF and the pollutant emissions is obtained for Houston. This relation is a combination of two power functions (Y = aXb) relating CO and NOx emissions to AHF, giving a determinant coefficient (R2) of 0.72. The AHF for Houston derived from the regression relation has high temporal (R = 0.91) and spatial (R = 0.83) correlations with the bottom-up AHF. Hourly AHF for the whole US in summer is estimated by applying the regression relation to the NEI-2005 summer pollutant emissions with a high spatial resolution of 4-km. The summer daily mean AHF range 10–40 W m-2 on a 4 × 4 km2 grid scale with maximum heat fluxes of 50–140 W m-2 for major US cities. The AHFs derived from the regression relations between the bottom-up AHF and either CO or NOx emissions show a small difference of less than 5% (4.7 W m-2) in city-scale daily mean AHF, and similar R2 statistics, compared to results from their combination. Thus, emissions of either species can be used to estimate AHF in the US cities. An hourly AHF inventory at 4 × 4 km2 resolution over the entire US based on the combined regression is derived and made publicly available for use in mesoscale numerical modeling.
机译:提出了一种统计回归方法,该方法使用人为污染物排放清单估算小时人为热通量(AHF),以用于中尺度气象和空气质量建模。根据从详细的能耗数据以及美国国家排放清单年度(NEI-2005)中人为排放的一氧化碳(CO)和氮氧化物(NOx)估算的自下而上的AHF,AHF与获得休斯顿的污染物排放量。此关系是将CO和NOx排放与AHF相关联的两个幂函数(Y = aXb)的组合,确定因子(R2)为0.72。从回归关系得出的休斯敦AHF与自下而上的AHF具有较高的时间(R = 0.91)和空间(R = 0.83)相关性。通过将NEI-2005夏季污染物排放量的回归关系应用于4 km的高空间分辨率,可以估算出整个美国夏季的每小时AHF。夏季每日平均AHF范围在4×4 km2网格范围内为10–40 W m-2,美国主要城市的最大热通量为50–140 W m-2。由下而上的AHF与CO或NOx排放之间的回归关系得出的AHF与城市规模的日均AHF相比,相差不超过5%(4.7 W m-2),并且与R2统计数据相类似结合起来的结果。因此,在美国城市中,两种物质的排放都可用于估算AHF。基于组合回归,得出了整个美国每小时分辨率为4×4 km2的AHF清单,并公开提供给中尺度数值模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号