首页> 外文OA文献 >Positive Matrix Factorization of PM2.5 - Eliminating the Effects of Gas/Particle Partitioning of Semivolatile Organic Compounds
【2h】

Positive Matrix Factorization of PM2.5 - Eliminating the Effects of Gas/Particle Partitioning of Semivolatile Organic Compounds

机译:pm2.5的正矩阵分解 - 消除半挥发性有机物气体/颗粒分配的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Gas-phase concentrations of semi-volatile organic compounds (SVOCs) were calculated from gas/particle (G/P) partitioning theory using their measured particle-phase concentrations. The particle-phase data were obtained from an existing filter measurement campaign (27 January 2003-2 October 2005) as a part of the Denver Aerosol Sources and Health (DASH) study, including 970 observations of 71 SVOCs (Xie et al., 2013). In each compound class of SVOCs, the lighter species (e.g. docosane in n-alkanes, fluoranthene in PAHs) had higher total concentrations (gas + particle phase) and lower particle-phase fractions. The total SVOC concentrations were analyzed using positive matrix factorization (PMF). Then the results were compared with source apportionment results where only particle-phase SVOC concentrations were used (filter-based study; Xie et al., 2013). For the filter-based PMF analysis, the factors primarily associated with primary or secondary sources (n-alkane, EC/sterane and inorganic ion factors) exhibit similar contribution time series (r = 0.92-0.98) with their corresponding factors (n-alkane, sterane and nitrate + sulfate factors) in the current work. Three other factors (light n-alkane/PAH, PAH and summer/odd n-alkane factors) are linked with pollution sources influenced by atmospheric processes (e.g. G/P partitioning, photochemical reaction), and were less correlated (r = 0.69-0.84) with their corresponding factors (light SVOC, PAH and bulk carbon factors) in the current work, suggesting that the source apportionment results derived from filter-based SVOC data could be affected by atmospheric processes. PMF analysis was also performed on three temperature-stratified subsets of the total SVOC data, representing ambient sampling during cold (daily average temperature20°C) periods. Unlike the filter-based study, in this work the factor characterized by the low molecular weight (MW) compounds (light SVOC factor) exhibited strong correlations (r = 0.82-0.98) between the full data set and each sub-data set solution, indicating that the impacts of G/P partitioning on receptor-based source apportionment could be eliminated by using total SVOC concentrations.
机译:半挥发性有机化合物(SVOC)的气相浓度是根据气体/颗粒(G / P)分配理论使用其测得的颗粒浓度计算得出的。颗粒相数据是从现有的过滤器测量活动(2003年1月27日至2005年10月2日)获得的,这是丹佛气溶胶来源与健康(DASH)研究的一部分,包括对71种SVOC的970次观测(Xie等,2013)。 )。在每种SVOC的化合物类别中,较轻的物质(例如正构烷烃中的二十二烷,PAH中的荧蒽)具有较高的总浓度(气相+颗粒相)和较低的颗粒相分数。使用正矩阵分解(PMF)分析总SVOC浓度。然后,将结果与仅使用颗粒相SVOC浓度的源分配结果进行比较(基于过滤器的研究; Xie等人,2013)。对于基于过滤器的PMF分析,主要与主要或次要来源相关的因素(正构烷烃,EC /甾烷和无机离子因子)显示出相似的贡献时间序列(r = 0.92-0.98)及其相应的因子(正构烷烃) ,甾烷和硝酸盐+硫酸盐等因素)。其他三个因素(轻型正构烷烃/多环芳烃,多环芳烃和夏季/奇数正构烷烃因子)与受大气过程(例如G / P分配,光化学反应)影响的污染源相关,相关性较低(r = 0.69- 0.84)及其相应的因素(轻质SVOC,PAH和大块碳系数),表明基于过滤器的SVOC数据得出的源分配结果可能会受到大气过程的影响。还对总SVOC数据的三个温度分层子集进行了PMF分析,这些子集代表了寒冷(每日平均温度20°C)期间的环境采样。与基于过滤器的研究不同,在这项工作中,以低分子量(MW)化合物为特征的因子(轻SVOC因子)在完整数据集和每个子数据集解决方案之间表现出很强的相关性(r = 0.82-0.98),表明通过使用总SVOC浓度可以消除G / P分配对基于受体的源分配的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号