首页> 外文OA文献 >Unmanned Aerial Vehicle Based Structure from Motion Biomass Inventory Estimates
【2h】

Unmanned Aerial Vehicle Based Structure from Motion Biomass Inventory Estimates

机译:基于运动生物量库存估算的无人机结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Riparian vegetation restoration efforts demand cost effective, accurate, and replicable impact assessments. In this thesis a method is presented using an Unmanned Aerial Vehicle (UAV) equipped with a GoPro digital camera to collect photogrammetric data of a 2.02-acre riparian restoration. A three-dimensional point cloud was created from the photos using Structure from Motion (SfM) techniques. The point cloud was analyzed and compared to traditional, ground-based monitoring techniques. Ground truth data collected using the status-quo approach was collected on 6.3% of the study site and averaged across the entire site to report stem heights in stems/acre in three height classes, 0-3 feet, 3-7 feet, and greater than 7 feet. The project site was divided into four analysis sections, one for derivation of parameters used in the UAV data analysis, and the remaining three sections reserved for method validation. The most conservative of several methods tested comparing the ground truth data to the UAV generated data produced an overall error of 21.6% and indicated an r2 value of 0.98. A Bland Altman analysis indicated a 99% probability that the UAV stems/plot result will be within 159 stems/plot of the ground truth data. The ground truth data is reported with an 80% confidence interval of +/- 844 stems/plot, thus the UAV was able to estimate stems well within this confidence interval. Further research is required to validate this method longitudinally at this same site and across varying ecologies. These results suggest that UAV derived environmental impact assessments at riparian restoration sites may offer competitive performance and value.
机译:河岸植被恢复工作需要进行成本有效,准确和可复制的影响评估。本文提出了一种使用配备GoPro数码相机的无人机来收集2.02英亩河岸修复的摄影测量数据的方法。使用“运动结构”(SfM)技术从照片创建三维点云。分析了点云并将其与传统的地面监视技术进行了比较。使用现状方法收集的地面真相数据是在6.3%的研究地点上收集的,并在整个地点进行平均,以报告3/0英尺,3-7英尺和3英尺以上的三个高度类别的茎/英亩中的茎高。超过7英尺。该项目现场分为四个分析部分,一个用于导出无人机数据分析中使用的参数,其余三个部分保留用于方法验证。在将地面真实数据与UAV生成的数据进行比较后,所测试的几种方法中最保守的方法产生的总误差为21.6%,r2值为0.98。布兰德·奥特曼(Bland Altman)分析表明,UAV干/图结果的99%概率在地面真相数据的159干/图范围内。据报道,地面真相数据具有80%置信区间+/- 844茎/图,因此,无人机能够在此置信区间内很好地估算茎。需要进一步的研究以在同一地点和不同生态环境中纵向验证该方法。这些结果表明,无人机在河岸恢复现场获得的环境影响评估可能会提供具有竞争力的性能和价值。

著录项

  • 作者

    Bedell Emily Jane;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号