首页> 外文OA文献 >Spectral Methods for Boolean and Multiple-Valued Input Logic Functions
【2h】

Spectral Methods for Boolean and Multiple-Valued Input Logic Functions

机译:布尔和多值输入逻辑函数的谱方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Spectral techniques in digital logic design have been known for more than thirty years. They have been used for Boolean function classification, disjoint decomposition, parallel and serial linear decomposition, spectral translation synthesis (extraction of linear pre- and post-filters), multiplexer synthesis, prime implicant extraction by spectral summation, threshold logic synthesis, estimation of logic complexity, testing, and state assignment. This dissertation resolves many important issues concerning the efficient application of spectral methods used in the computer-aided design of digital circuits. The main obstacles in these applications were, up to now, memory requirements for computer systems and lack of the possibility of calculating spectra directly from Boolean equations. By using the algorithms presented here these obstacles have been overcome. Moreover, the methods presented in this dissertation can be regarded as representatives of a whole family of methods and the approach presented can be easily adapted to other orthogonal transforms used in digital logic design. Algorithms are shown for Adding, Arithmetic, and Reed-Muller transforms. However, the main focus of this dissertation is on the efficient computer calculation of Rademacher-Walsh spectra of Boolean functions, since this particular ordering of Walsh transforms is most frequently used in digital logic design. A theory has been developed to calculate the Rademacher-Walsh transform from a cube array specification of incompletely specified Boolean functions. The importance of representing Boolean functions as arrays of disjoint ON- and DC- cubes has been pointed out, and an efficient new algorithm to generate disjoint cubes from non-disjoint ones has been designed. The transform algorithm makes use of the properties of an array of disjoint cubes and allows the determination of the spectral coefficients in an independent way. By such an approach each spectral coefficient can be calculated separately or all the coefficients can be calculated in parallel. These advantages are absent in the existing methods. The possibility of calculating only some coefficients is very important since there are many spectral methods in digital logic design for which the values of only a few selected coefficients are needed. Most of the current methods used in the spectral domain deal only with completely specified Boolean functions. On the other hand, all of the algorithms introduced here are valid, not only for completely specified Boolean functions, but for functions with donu27t cares. Donu27t care minterms are simply represented in the form of disjoint cubes. The links between spectral and classical methods used for designing digital circuits are described. The real meaning of spectral coefficients from Walsh and other orthogonal spectra in classical logic terms is shown. The relations presented here can be used for the calculation of different transforms. The methods are based on direct manipulations on Karnaugh maps. The conversion start with Karnaugh maps and generate the spectral coefficients. The spectral representation of multiple-valued input binary functions is proposed here for the first time. Such a representation is composed of a vector of Walsh transforms each vector is defined for one pair of the input variables of the function. The new representation has the advantage of being real-valued, thus having an easy interpretation. Since two types of codings of values of binary functions are used, two different spectra are introduced. The meaning of each spectral coefficient in classical logic terms is discussed. The mathematical relationships between the number of true, false, and donu27t care minterms and spectral coefficients are stated. These relationships can be used to calculate the spectral coefficients directly from the graphical representations of binary functions. Similarly to the spectral methods in classical logic design, the new spectral representation of binary functions can find applications in many problems of analysis, synthesis, and testing of circuits described by such functions. A new algorithm is shown that converts the disjoint cube representation of Boolean functions into fixed-polarity Generalized Reed-Muller Expansions (GRME). Since the known fast algorithm that generates the GRME, based on the factorization of the Reed-Muller transform matrix, always starts from the truth table (minterms) of a Boolean function, then the described method has advantages due to a smaller required computer memory. Moreover, for Boolean functions, described by only a few disjoint cubes, the method is much more efficient than the fast algorithm. By investigating a family of elementary second order matrices, new transforms of real vectors are introduced. When used for Boolean function transformations, these transforms are one-to-one mappings in a binary or ternary vector space. The concept of different polarities of the Arithmetic and Adding transforms has been introduced. New operations on matrices: horizontal, vertical, and vertical-horizontal joints (concatenations) are introduced. All previously known transforms, and those introduced in this dissertation can be characterized by two features: u22orderingu22 and u22polarityu22. When a transform exists for all possible polarities then it is said to be u22generalizedu22. For all of the transforms discussed, procedures are given for generalizing and defining for different orderings. The meaning of each spectral coefficient for a given transform is also presented in terms of standard logic gates. There exist six commonly used orderings of Walsh transforms: Hadamard, Rademacher, Kaczmarz, Paley, Cal-Sal, and X. By investigating the ways in which these known orderings are generated the author noticed that the same operations can be used to create some new orderings. The generation of two new Walsh transforms in Gray code orderings, from the straight binary code is shown. A recursive algorithm for the Gray code ordered Walsh transform is based on the new operator introduced in this presentation under the name of the u22bi-symmetrical pseudo Kronecker productu22. The recursive algorithm is the basis for the flow diagram of a constant geometry fast Walsh transform in Gray code ordering. The algorithm is fast (N 10g2N additions/subtractions), computer efficient, and is implemented
机译:数字逻辑设计中的频谱技术已众所周知三十多年了。它们已用于布尔函数分类,不相交分解,并行和串行线性分解,频谱平移合成(线性前置滤波器和后置滤波器的提取),多路复用器合成,通过频谱求和的本征蕴涵提取,阈值逻辑合成,逻辑估计复杂性,测试和状态分配。本论文解决了有关数字电路计算机辅助设计中频谱方法有效应用的许多重要问题。到目前为止,这些应用程序中的主要障碍是计算机系统对内存的需求以及缺乏直接从布尔方程式计算光谱的可能性。通过使用此处介绍的算法,克服了这些障碍。而且,本文提出的方法可以看作是整个方法族的代表,并且提出的方法可以很容易地适应数字逻辑设计中使用的其他正交变换。示出了用于加法,算术法和里德穆勒变换的算法。然而,本文的主要研究重点是布尔函数的Rademacher-Walsh谱的高效计算机计算,因为这种Walsh变换的特殊顺序在数字逻辑设计中最常用。已经开发了一种从不完全指定的布尔函数的多维数据集数组规范计算Rademacher-Walsh变换的理论。指出了将布尔函数表示为不相交的ON和DC多维数据集数组的重要性,并且设计了一种有效的新算法,该算法可以从不相交的多维数据集生成不相交的多维数据集。变换算法利用了不相交的立方体的阵列的特性,并允许以独立的方式确定光谱系数。通过这种方法,可以分别计算每个频谱系数,或者可以并行计算所有系数。这些优点在现有方法中是不存在的。仅计算一些系数的可能性非常重要,因为数字逻辑设计中有许多频谱方法只需要几个选定系数的值即可。光谱域中使用的大多数当前方法仅处理完全指定的布尔函数。另一方面,此处介绍的所有算法均有效,不仅适用于完全指定的布尔函数,而且适用于不关心的函数。不关心最小项以不相交的多维数据集的形式简单表示。描述了用于设计数字电路的频谱方法与经典方法之间的联系。显示了沃尔什(Walsh)光谱系数和其他正交光谱的古典逻辑项的真实含义。此处介绍的关系可用于计算不同的变换。这些方法基于对卡诺图的直接操作。转换从卡诺图开始,并生成频谱系数。这里首次提出了多值输入二进制函数的频谱表示。这样的表示由Walsh变换的向量组成,每个向量为函数的一对输入变量定义。新的表示形式具有实值优势,因此易于解释。由于使用了二进制函数值的两种类型的编码,因此引入了两种不同的光谱。讨论了经典逻辑术语中每个频谱系数的含义。陈述了正确,错误和无关紧要项的数量与频谱系数之间的数学关系。这些关系可用于直接从二进制函数的图形表示中计算光谱系数。与经典逻辑设计中的频谱方法类似,二进制函数的新频谱表示形式可以在许多分析,合成和测试此类函数所描述的电路的问题中找到应用。展示了一种新算法,该算法将布尔函数的不相交的立方表示形式转换为固定极性的广义Reed-Muller展开(GRME)。由于基于Reed-Muller变换矩阵的因式分解生成GRME的已知快速算法始终从布尔函数的真值表(最小项)开始,因此,由于所需的计算机内存较小,因此所描述的方法具有优势。此外,对于仅由几个不相交的多维数据集描述的布尔函数,该方法比快速算法更有效。通过研究一系列基本的二阶矩阵,引入了实向量的新变换。用于布尔函数转换时,这些转换是二进制或三元向量空间中的一对一映射。引入了算术和加法变换的不同极性的概念。引入了关于矩阵的新操作:水平,垂直和垂直-水平关节(串联)。所有先前已知的变换以及本论文中介绍的变换都可以通过两个特征来表征: u22ordering u22和 u22polarity u22。当存在所有可能极性的变换时,则称其为通用化。对于所有讨论的变换,都给出了用于概括和定义不同顺序的过程。给定变换的每个频谱系数的含义也以标准逻辑门表示。存在沃尔什变换的六个常用排序:Hadamard,Rademacher,Kaczmarz,Paley,Cal-Sal和X。通过研究生成这些已知排序的方式,作者注意到可以使用相同的操作来创建一些新的订购。显示了直接二进制代码从格雷代码顺序生成的两个新的Walsh变换。格雷码有序沃尔什变换的递归算法基于本演示文稿中引入的新运算符,其名称为 u22bi-对称伪Kronecker积 u22。递归算法是格雷码排序中恒定几何快速Walsh变换流程图的基础。该算法速度快(N 10g2N加/减),计算机效率高,已实现

著录项

  • 作者

    Falkowski Bogdan Jaroslaw;

  • 作者单位
  • 年度 1991
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号