首页> 外文OA文献 >Time of flight mass spectra of ions in plasmas produced by hypervelocity impacts of organic and mineralogical microparticles on a cosmic dust analyser
【2h】

Time of flight mass spectra of ions in plasmas produced by hypervelocity impacts of organic and mineralogical microparticles on a cosmic dust analyser

机译:有机和矿物微粒在宇宙尘埃分析仪上的超高速撞击产生的等离子体中离子的飞行时间质谱

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ionic plasma produced by a hypervelocity particle impact can be analysed to determine compositional information for the original particle by using a time-of-flight mass spectrometer. Such methods have been adopted on interplanetary dust detectors to perform in-situ analyses of encountered grains, for example, the Cassini Cosmic Dust Analyser (CDA). In order to more fully understand the data returned by such instruments, it is necessary to study their response to impacts in the laboratory. Accordingly, data are shown here for the mass spectra of ionic plasmas, produced through the acceleration of microparticles via a 2 MV van de Graaff accelerator and their impact on a dimensionally correct CDA model with a rhodium target. The microparticle dusts examined have three different chemical compositions: metal (iron), organic (polypyrrole and polystyrene latex) and mineral (aluminosilicate clay). These microparticles have mean diameters in the range 0.1 to 1.6 µm and their velocities range from 1-50 km s. They thus cover a wide range of compositions, sizes and speeds expected for dust particles encountered by spacecraft in the Solar System. The advent of new low-density, microparticles with highly controllable attributes (composition, size) has enabled a number of new investigations in this area. The key is the use of a conducting polymer, either as the particle itself or as a thin overlayer on organic (or inorganic) core particles. This conductive coating permits efficient electrostatic charging and acceleration. Here, we examine how the projectile's chemical composition influences the ionic plasma produced after the hypervelocity impact. This study thus extends our understanding of impact plasma formation and detection. The ionization yield normalized to particle mass was found to depend on impact speed to the power (3.4 ± 0.1) for iron and (2.9 ± 0.1) for polypyrrole coated polystyrene and aluminosilicate clay. The ioization signal rise time was found to fall for all projectile materials from a few microseconds at low impact speeds (3 km s) to a few tenths of a microsecond at higher speeds (approximately 16 km s for aluminosilicate particles and approximately 28 km s for iron and polystyrene particles). At speeds greater than these the rise time was a constant few tenths of a microsecond independent of impact speed. The mass resolution of the time of flight spectrometer was found to be non-linear at high masses above 100 amu. It was Δm/m = 5 for m = 1 amu and 40 for m = 200 amu. However, although at high masses most mass peaks had the resolution quoted, there were also occasional much narrower mass peaks observed, suggesting that at 250 to 280 amu Δm/m = 80 to 100. The lower resolutions may be due to closely spaced mass peak signals effectively merging into one observed peak due to the (greater but still finite) resolution found for the isolated mass peaks. Complex mass spectra have been reproducibly obtained from a number of different projectiles that display many charged molecular fragments with masses up to 250 amu and with periodicities of 12-14 amu. These new studies reveal an extremely strong dependence of the time-of-flight mass spectra on the impact speed, particularly at low velocities (1-20 km s. In some impact velocity regimes it is possible to distinguish time-of-flight spectra originating from organic microparticles from those obtained from iron microparticles. However, such discrimination was not possible at high impact speeds, nor was it possible to distinguish between the time-of-flight spectra obtained for aluminosilicate particles from those obtained for iron projectiles.
机译:可以通过使用飞行时间质谱仪分析超高速粒子撞击产生的离子等离子体,以确定原始粒子的组成信息。这种方法已经在行星际尘埃探测器上采用,以对遇到的谷物进行原位分析,例如,卡西尼号宇宙尘埃分析仪(CDA)。为了更全面地了解此类仪器返回的数据,有必要研究它们对实验室影响的响应。因此,此处显示了离子等离子体的质谱数据,这些离子是通过2 MV van de Graaff加速器加速微粒产生的,以及它们对带有铑靶的尺寸正确的CDA模型的影响。检查的微粒粉尘具有三种不同的化学成分:金属(铁),有机物(聚吡咯和聚苯乙烯乳胶)和矿物(铝硅酸盐粘土)。这些微粒的平均直径在0.1至1.6 µm的范围内,其速度范围为1-50 km s。因此,它们涵盖了航天器在太阳系中遇到的尘埃颗粒所期望的广泛组成,大小和速度。具有高度可控属性(成分,尺寸)的新型低密度微粒的出现,使得该领域的许多新研究成为可能。关键是使用导电聚合物,既可以用作颗粒本身,也可以用作有机(或无机)芯颗粒上的薄覆盖层。该导电涂层允许有效的静电充电和加速。在这里,我们检查了弹丸的化学成分如何影响超高速撞击后产生的离子等离子体。因此,这项研究扩展了我们对碰撞等离子体形成和检测的理解。发现归一化为颗粒质量的电离产率取决于铁的冲击速度(3.4±0.1)和聚吡咯涂层的聚苯乙烯和硅铝酸盐粘土的冲击速度(2.9±0.1)。发现所有弹丸材料的黄化信号上升时间从低冲击速度(3 km s)的几微秒下降到较高速度(硅铝酸盐颗粒约16 km s,铝硅酸盐颗粒约28 km s)的十分之几微秒。铁和聚苯乙烯颗粒)。在大于这些速度的情况下,上升时间恒定为十分之一微秒,而与冲击速度无关。发现飞行时间光谱仪的质量分辨率在100 amu以上的高质量下是非线性的。 m = 1 amu为Δm/ m = 5,m = 200 amu为40。然而,尽管在高质量条件下,大多数质量峰具有所引用的分辨率,但偶尔也会观察到更窄的质量峰,这表明在250至280 amuΔm/ m = 80至100时。较低的分辨率可能是由于质量峰的间距很小信号有效地合并到一个观察到的峰中,这是由于孤立的质谱峰的分离度更大(但仍然很有限)。复杂的质谱已从许多不同的射弹中重现,这些射弹显示出许多带电分子片段,质量高达250 amu,周期性为12-14 amu。这些新研究揭示了飞行时间质谱图对撞击速度的强烈依赖性,特别是在低速(1-20 km s)下。在某些撞击速度范围内,可以区分飞行时间质谱图从铁微粒获得的飞行时间光谱是不可能的,也不能从铝硅酸盐微粒获得的飞行时间光谱与从铁弹丸获得的飞行时间光谱区分开。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号