首页> 外文OA文献 >A bivariate F distribution with marginals on arbitrary numerator and denominator degrees of freedom, and related bivariate beta and t distributions
【2h】

A bivariate F distribution with marginals on arbitrary numerator and denominator degrees of freedom, and related bivariate beta and t distributions

机译:具有任意分子和分母自由度边缘的双变量 F 分布,以及相关的二元β和 t 分布

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The classical bivariate distribution arises from ratios of chi-squared random variables with common denominators. A consequent disadvantage is that its univariate marginal distributions have one degree of freedom parameter in common. In this paper, we add a further independent chi-squared random variable to the denominator of one of the ratios and explore the extended bivariate distribution, with marginals on arbitrary degrees of freedom, that results. Transformations linking , beta and skew distributions are then applied componentwise to produce bivariate beta and skew distributions which also afford marginal (beta and skew ) distributions with arbitrary parameter values. We explore a variety of properties of these distributions and give an example of a potential application of the bivariate beta distribution in Bayesian analysis.
机译:经典的双变量分布源自卡方随机变量与公分母的比率。随之而来的缺点是其单变量边际分布具有一个共同的自由度参数。在本文中,我们将另外一个独立的卡方随机变量添加到其中一个比率的分母,并探索具有任意自由度边际的扩展双变量分布。然后,按分量应用转换链接,β和偏斜分布以生成双变量β和偏斜分布,该变量也提供具有任意参数值的边际(β和偏斜)分布。我们探索了这些分布的各种性质,并举例说明了双变量β分布在贝叶斯分析中的潜在应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号