首页> 外文OA文献 >Characterization of double diffusive convection steps and heat budget in the deep Arctic Ocean
【2h】

Characterization of double diffusive convection steps and heat budget in the deep Arctic Ocean

机译:Characterization of double diffusive convection steps and heat budget in the deep arctic Ocean

摘要

In this paper, we explore the hydrographic structure and heat budget in the deep Canada Basin by using data measured with McLane-Moored-Profilers (MMP), bottom pressure recorders (BPR), and conductivity-temperature-depth (CTD) profilers. Upward from the bottom, a homogeneous bottom layer and its overlaying double diffusive convection (DDC) steps are well identified at Mooring A ( 75 degrees N,150 degrees W). We find that the deep water is in weak diapycnal mixing because the effective diffusivity of the bottom layer is approximate to 1.8x10-5m2s-1, while that of the other steps is approximate to 10-6m2s-1. The vertical heat flux through the DDC steps is evaluated by using different methods. We find that the heat flux ( 0.1-11mWm-2) is much smaller than geothermal heating ( approximate to 50mWm-2). This suggests that the stack of DDC steps acts as a thermal barrier in the deep basin. Moreover, the temporal distributions of temperature and salinity differences across the interface are exponential, whereas those of heat flux and effective diffusivity are found to be approximately lognormal. Both are the result of strong intermittency. Between 2003 and 2011, temperature fluctuations close to the sea floor were distributed asymmetrically and skewed toward positive values, which provide a direct observation that geothermal heating was transferred into the ocean. Both BPR and CTD data suggest that geothermal heating and not the warming of the upper ocean is the dominant mechanism responsible for the warming of deep water. As the DDC steps prevent vertical heat transfer, geothermal heating is unlikely to have a significant effect on the middle and upper Arctic Ocean.
机译:在本文中,我们使用McLane系泊剖面仪(MMP),底部压力记录仪(BPR)和电导率-温度-深度(CTD)剖面仪测量的数据,探索加拿大深海盆地的水文结构和热量收支。从底部向上看,均匀的底层及其覆盖的双扩散对流(DDC)步骤在系泊A(75度N,150度W)处被很好地识别出来。我们发现深水处于较弱的斜向混合中,因为底层的有效扩散系数约为1.8x10-5m2s-1,而其他步骤的有效扩散系数约为10-6m2s-1。通过DDC步骤的垂直热通量通过使用不同的方法进行评估。我们发现热通量(0.1-11mWm-2)远小于地热加热(约50mWm-2)。这表明,DDC步骤的堆栈充当了深盆地中的热障。此外,界面上温度和盐度差异的时间分布是指数分布,而热通量和有效扩散率的时间分布则近似对数正态分布。两者都是强间歇性的结果。在2003年至2011年之间,靠近海床的温度波动不对称分布,并偏向正值,这直接观察到地热加热已转移到海洋中。 BPR和CTD数据均表明,地热加热而非上层海洋的变暖是造成深水变暖的主要机制。由于DDC步骤阻止了垂直传热,因此地热加热不太可能对北冰洋中部和上部产生重大影响。

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号