首页> 外文OA文献 >Modelling Acceleration Decisions in Traffic Streams with Weak Lane Discipline: A Latent Leader Approach
【2h】

Modelling Acceleration Decisions in Traffic Streams with Weak Lane Discipline: A Latent Leader Approach

机译:具有弱通道规则的交通流加速决策建模:一种潜在的领导者方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Acceleration is an important driving manoeuvre that has been modelled for decades as a critical element of the microscopic traffic simulation tools. The state-of-the art acceleration models have however primarily focused on lane based traffic. In lane based traffic, every driver has a single distinct lead vehicle in the front and the acceleration of the driver is typically modelled as a function of the relative speed, position and/or type of the corresponding leader. On the contrary, in a traffic stream with weak lane discipline, the subject driver may have multiple vehicles in the front. The subject driver is therefore subjected to multiple sources of stimulus for acceleration and reacts to the stimulus from the governing leader. However, only the applied accelerations are observed in the trajectory data, and the governing leader is unobserved or latent. The state-of-the-art models therefore cannot be directly applied to traffic streams with weak lane discipline. This prompts the current research where we present a latent leader acceleration model. The model has two components: a random utility based dynamic class membership model (latent leader component) and a class-specific acceleration model (acceleration component). The parameters of the model have been calibrated using detailed trajectory data collected from Dhaka, Bangladesh. Results indicate that the probability of a given front vehicle of being the governing leader can depend on the type of the lead vehicle and the extent of lateral overlap with the subject driver. The estimation results are compared against a simpler acceleration model (where the leader is determined deterministically) and a significant improvement in the goodness-of-fit is observed. The proposed models, when implemented in microscopic traffic simulation tools, are expected to result more realistic representation of traffic streams with weak lane discipline.
机译:加速是一项重要的驾驶操作,数十年来已被建模为微观交通仿真工具的关键要素。但是,最新的加速模型主要集中在基于车道的交通上。在基于车道的交通中,每个驾驶员的前方都有一个单独的领先车辆,驾驶员的加速度通常根据相应领导者的相对速度,位置和/或类型进行建模。相反,在车道纪律较弱的交通流中,目标驾驶员可能在前面有多辆车。因此,目标驾驶员受到多种刺激源的加速,并对来自领导者的刺激做出反应。但是,在轨迹数据中只能观察到所施加的加速度,并且领导者未被观察到或潜伏着。因此,最新模型无法直接应用于车道纪律较弱的交通流。这促使当前的研究提出了潜在的领导者加速模型。该模型有两个组件:一个基于随机效用的动态类成员模型(潜在的领导者组件)和一个特定于类的加速模型(加速组件)。使用从孟加拉国达卡收集的详细轨迹数据对模型的参数进行了校准。结果表明,给定前排车辆成为领导者的可能性取决于前排车辆的类型和与目标驾驶员的横向重叠程度。将估计结果与一个更简单的加速度模型(确定性地确定前导)进行比较,并观察到拟合优度的显着提高。拟议的模型在微观交通仿真工具中实施后,有望以较弱的车道纪律产生更逼真的交通流。

著录项

  • 作者

    Choudhury CF; Islam MM;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号