首页> 外文OA文献 >Linear stability of planar premixed flames: reactive Navier-Stokes equations with finite activation energy and arbitrary Lewis numberud
【2h】

Linear stability of planar premixed flames: reactive Navier-Stokes equations with finite activation energy and arbitrary Lewis numberud

机译:平面预混火焰的线性稳定性:具有有限激活能和任意路径数的反应Navier-stokes方程 ud

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A numerical shooting method for performing linear stability analyses of travelling waves is described and applied to the problem of freely propagating planar premixed flames. Previous linear stability analyses of premixed flames either employ high activation temperature asymptotics or have been performed numerically with finite activation temperature, but either for unit Lewis numbers (which ignores thermal-diffusive effects) or in the limit of small heat release (which ignores hydrodynamic effects). In this paper the full reactive Navier-Stokes equations are used with arbitrary values of the parameters (activation temperature, Lewis number, heat of reaction, Prandtl number), for which both thermal-diffusive and hydrodynamic effects on the instability, and their interactions, are taken into account. Comparisons are made with previous asymptotic and numerical results. For Lewis numbers very close to or above unity, for which hydrodynamic effects caused by thermal expansion are the dominant destablizing mechanism, it is shown that slowly varying flame analyses give qualitatively good but quantitatively poor predictions, and also that the stability is insensitive to the activation temperature. However, for Lewis numbers sufficiently below unity for which thermal-diffusive effects play a major role, the stability of the flame becomes very sensitive to the activation temperature. Indeed, unphysically high activation temperatures are required for the high activation temperature analysis to give quantitatively good predictions at such low Lewis numbers. It is also shown that state-insensitive viscosity has a small destabilizing effect on the cellular instability at low Lewis numbers. ud
机译:描述了一种用于执行行波线性稳定性分析的数值射击方法,并将其应用于自由传播平面预混火焰的问题。之前对预混火焰的线性稳定性分析要么采用较高的活化温度渐近线,要么采用有限的活化温度进行数值分析,但要么针对单位路易斯数(忽略热扩散效应),要么在较小的热量释放范围内(忽略流体动力效应) )。在本文中,将完整的反应性Navier-Stokes方程与参数的任意值(活化温度,路易斯数,反应热,普朗特数)一起使用,对于这些参数,热扩散和流体动力均对不稳定性及其相互作用具有影响,被考虑在内。与先前的渐近和数值结果进行了比较。对于非常接近或大于1的Lewis数(由热膨胀引起的流体动力学效应是主要的破坏机理)而言,表明缓慢变化的火焰分析给出了定性良好但定量上较差的预测,并且稳定性对激活不敏感温度。但是,对于足够低于1的Lewis数(热扩散作用起主要作用),火焰的稳定性对活化温度变得非常敏感。实际上,高活化温度分析需要非自然的高活化温度,以在如此低的路易斯数下给出定量良好的预测。还显示出状态不敏感的粘度在低路易斯数下对细胞不稳定性具有小的去稳定作用。 ud

著录项

  • 作者

    Sharpe G.J.;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号