首页> 外文OA文献 >Comparisons of Flame Surface Density Measurements with Direct Numerical Simulations of a lean Methane-air Flame in High-intensity Turbulence
【2h】

Comparisons of Flame Surface Density Measurements with Direct Numerical Simulations of a lean Methane-air Flame in High-intensity Turbulence

机译:火焰表面密度测量与高强度湍流中贫甲烷 - 空气火焰直接数值模拟的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The turbulent burning velocity of premixed flames exhibits a non-linear variation under increasing turbulence intensity of the unburned mixture. This phenomenon, known as the bending effect, has not been fully explained to date. A key aspect is the mechanism responsible for the observed departure from linearity. Experimental measurements of spherically-expanding flame kernels [Bradley et al. (2013), Proc.Combust.Inst., 34:1519–1526.] point towards local quenching as the primary mechanism of inhibition (bending). On the other hand, recent Direct Numerical Simulations of statistically-planar flames [Nivarti et al. (2017), Proc.Combust.Inst. , 36:(in press).] indicate that bending might be achieved in the absence of local quenching. The present study investigates the underlying mechanisms by comparing DNS data with experimental measurements of a lean premixed methane-air flame in high-intensity turbulence.
机译:在未燃烧混合物的湍流强度增加的情况下,预混火焰的湍流燃烧速度呈现非线性变化。迄今为止,尚未完全解释这种现象,即弯曲效应。一个关键方面是导致观察到的偏离线性的机制。球形膨胀火焰核的实验测量[Bradley等。 (2013),Proc.Combust.Inst。,34:1519–1526。]指出局部淬灭是抑制作用的主要机制(弯曲)。另一方面,最近统计平面火焰的直接数值模拟[Nivarti等。 (2017),Probus.Combust.Inst。 ,36 :(印刷中)。]表示在没有局部淬火的情况下可以实现弯曲。本研究通过将DNS数据与高强度湍流中稀薄的预混甲烷-空气火焰的实验测量值进行比较,研究了潜在的机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号