首页> 外文OA文献 >Contextualized ranking of entity types based on knowledge graphs
【2h】

Contextualized ranking of entity types based on knowledge graphs

机译:基于知识图的实体类型的上下文排序

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

© 2016 Elsevier B.V. A large fraction of online queries targets entities. For this reason, Search Engine Result Pages (SERPs) increasingly contain information about the searched entities such as pictures, short summaries, related entities, and factual information. A key facet that is often displayed on the SERPs and that is instrumental for many applications is the entity type. However, an entity is usually not associated to a single generic type in the background knowledge graph but rather to a set of more specific types, which may be relevant or not given the document context. For example, one can find on the Linked Open Data cloud the fact that Tom Hanks is a person, an actor, and a person from Concord, California. All these types are correct but some may be too general to be interesting (e.g., person), while other may be interesting but already known to the user (e.g., actor), or may be irrelevant given the current browsing context (e.g., person from Concord, California). In this paper, we define the new task of ranking entity types given an entity and its context. We propose and evaluate new methods to find the most relevant entity type based on collection statistics and on the knowledge graph structure interconnecting entities and types. An extensive experimental evaluation over several document collections at different levels of granularity (e.g., sentences, paragraphs) and different type hierarchies (including DBpedia, Freebase, and schema.org) shows that hierarchy-based approaches provide more accurate results when picking entity types to be displayed to the end-user.
机译:©2016 Elsevier B.V.大部分在线查询都针对实体。因此,搜索引擎结果页(SERP)越来越多地包含有关搜索到的实体的信息,例如图片,简短摘要,相关实体和事实信息。实体类型是经常显示在SERP上并且对许多应用程序有用的关键方面。但是,实体通常不与背景知识图中的单个通用类型相关联,而是与一组更具体的类型相关联,这可能是相关的,也可能没有给定文档上下文。例如,可以在链接的开放数据云上找到汤姆·汉克斯(Tom Hanks)是加利福尼亚州康科德市的一个人,一个演员和一个人的事实。所有这些类型都是正确的,但有些可能太笼统而无法引起人们的兴趣(例如,人),而另一些可能是有趣的但已为用户(例如演员)所了解,或者在当前浏览上下文中可能不相关(例如,人) (来自加利福尼亚州康科德)。在本文中,我们定义了给定实体及其上下文的实体类型排名的新任务。我们提出并评估一种新方法,以基于集合统计数据和将实体和类型互连的知识图结构来找到最相关的实体类型。对不同粒度(例如,句子,段落)和不同类型层次结构(包括DBpedia,Freebase和schema.org)的几个文档集合进行的广泛实验评估表明,当选择实体类型时,基于层次结构的方法可以提供更准确的结果显示给最终用户。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号