首页> 外文OA文献 >Differential evolution based bi-level programming algorithm for computing normalized nash equilibrium
【2h】

Differential evolution based bi-level programming algorithm for computing normalized nash equilibrium

机译:基于差分进化的双层规划算法用于计算归一化纳什均衡

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Generalised Nash Equilibrium Problem (GNEP) is a Nash game with the distinct feature that the feasible strategy set of a player depends on the strategies chosen by all her opponents in the game. This characteristic distinguishes the GNEP from a conventional Nash Game. These shared constraints on each player’s decision space, being dependent on decisions of others in the game, increases its computational difficulty. A special solution of the GNEP is the Nash Normalized Equilibrium which can be obtained by transforming the GNEP into a bi-level program with an optimal value of zero in the upper level. In this paper, we propose a Differential Evolution based Bi-Level Programming algorithm embodying Stochastic Ranking to handle constraints (DEBLP-SR) to solve the resulting bi-level programming formulation. Numerical examples of GNEPs drawn from the literature are used to illustrate the performance of the proposed algorithm.
机译:广义纳什均衡问题(GNEP)是一种纳什游戏,其独特之处在于玩家的可行策略集取决于游戏中所有对手选择的策略。此特征使GNEP与常规的Nash游戏区分开来。这些对每个玩家决策空间的共同约束(取决于游戏中其他人的决策)增加了其计算难度。 GNEP的一种特殊解决方案是Nash归一化平衡,可以通过将GNEP转换为上层最佳值为零的双层程序来获得。在本文中,我们提出了一种基于差分演化的双层规划算法,该算法体现了随机排名以处理约束(DEBLP-SR),以解决由此产生的双层规划公式。从文献中得出的GNEP的数值示例用于说明所提出算法的性能。

著录项

  • 作者

    Koh Andrew;

  • 作者单位
  • 年度 100
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号