首页> 外文OA文献 >A combined Adaptive Neuro-Fuzzy and Bayesian strategy for recognition and prediction of gait events using wearable sensors
【2h】

A combined Adaptive Neuro-Fuzzy and Bayesian strategy for recognition and prediction of gait events using wearable sensors

机译:使用可穿戴传感器识别和预测步态事件的自适应神经模糊和贝叶斯策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A robust strategy for recognition and prediction of gait events using wearable sensors is presented in this paper. The strategy adopted here uses a combination of two computational intelligence approaches: Adaptive Neuro-Fuzzy and Bayesian methods. Recognition of gait events is performed by a Bayesian method which iteratively accumulates evidence to reduce uncertainty from sensor measurements. Prediction of gait events is based on the observation of decisions and actions made over time by our perception system. An Adaptive Neuro-Fuzzy system evaluates the reliability of predictions, learns a weighting parameter and controls the amount of predicted information to be used by our Bayesian method. Thus, this strategy ensures the achievement of better recognition and prediction performance in both accuracy and speed. The methods are validated with experiments for recognition and prediction of gait events with different walking activities, using data from wearable sensors attached to lower limbs of participants. Overall, results show the benefits of our combined Adaptive Neuro-Fuzzy and Bayesian strategy to achieve fast and accurate decisions, but also to evaluate and adapt its own performance, making it suitable for the development of intelligent assistive and rehabilitation robots.
机译:本文提出了一种使用可穿戴传感器识别和预测步态事件的鲁棒策略。此处采用的策略结合了两种计算智能方法:自适应神经模糊和贝叶斯方法。步态事件的识别是通过贝叶斯方法进行的,该方法反复积累证据以减少传感器测量的不确定性。步态事件的预测基于对我们的感知系统随时间做出的决策和动作的观察。自适应神经模糊系统评估预测的可靠性,学习加权参数并控制贝叶斯方法要使用的预测信息量。因此,该策略可确保在准确性和速度上实现更好的识别和预测性能。这些方法已通过实验进行了验证,这些实验可用于识别和预测具有不同步行活动的步态事件,并使用来自参与者下肢的可穿戴传感器的数据。总体而言,结果表明我们的自适应神经模糊和贝叶斯策略相结合的优势不仅可以实现快速,准确的决策,而且可以评估和调整其自身的性能,使其适合开发智能辅助和康复机器人。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号