首页> 外文期刊>Neurocomputing >A Multilayer Interval Type-2 Fuzzy Extreme Learning Machine for the recognition of walking activities and gait events using wearable sensors
【24h】

A Multilayer Interval Type-2 Fuzzy Extreme Learning Machine for the recognition of walking activities and gait events using wearable sensors

机译:一种多层间隔类型-2模糊极端学习机,用于使用可穿戴传感器识别行走活动和步态事件

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel Multilayer Interval Type-2 Fuzzy Extreme Learning Machine (ML-IT2-FELM) for the recognition of walking activities and Gait events is presented. The ML-IT2-FELM uses a hierarchical learning scheme that consists of multiple layers of IT2 Fuzzy Autoencoders (FAEs), followed by a final classification layer based on an IT2-FELM architecture. The core building block in the ML-IT2-FELM is an IT2-FELM, which is a generalised model of the Interval Type-2 Radial Basis Function Neural Network (IT2-RBFNN) and that is functionally equivalent to a class of simplified IT2 Fuzzy Logic Systems (FLSs). Each FAE in the ML-IT2-FELM employs an output layer with a direct-defuzzification process based on the Nie-Tan algorithm, while the IT2-FELM classifier includes a Karnik-Mendel type-reduction method (KM). Real data was collected using three inertial measurements units attached to the thigh, shank and foot of twelve healthy participants. The validation of the ML-IT2-FELM method is performed with two different experiments. The first experiment involves the recognition of three different walking activities: Level-Ground Walking (LGW), Ramp Ascent (RA) and Ramp Descent (RD). The second experiment consists of the recognition of stance and swing phases during the gait cycle. In addition, to compare the efficiency of the ML-IT2-FELM with other ML fuzzy methodologies, a kernel-based ML-IT2-FELM that is inspired by kernel learning and called KML-IT2-FELM is also implemented. The results from the recognition of walking activities and gait events achieved an average accuracy of 99.98% and 99.84% with a decision time of 290.4ms and 105ms, respectively, by the ML-IT2-FELM, while the KML-IT2-FELM achieved an average accuracy of 99.98% and 99.93% with a decision time of 191.9ms and 94ms. The experiments demonstrate that the ML-IT2-FELM is not only an effective Fuzzy Logic-based approach in the presence of sensor noise, but also a fast extreme learning machine for the recognition of different walking activities. (C) 2020 Elsevier B.V. All rights reserved.
机译:本文介绍了一种用于识别步行活动和步态事件的新型多层间隔类型-2模糊极限学习机(ML-IT2-FELM)。 ML-IT2-FELM使用分层学习方案,该方案由多层IT2模糊自动化器(FAE)组成,然后基于IT2-FELM架构进行最终分类层。 ML-IT2-FELM中的核心构建块是IT2-FELM,它是间隔类型-2径向基函数神经网络(IT2-RBFNN)的广义模型,其在功能上等同于一类简化的IT2模糊逻辑系统(FLS)。 ML-IT2-FELM中的每个FAE采用输出层,该输出层基于NIE-TAN算法采用直接排出过程,而IT2-FELM分类器包括Karnik-Mendel型减少方法(KM)。使用连接到大腿,柄和十二个健康参与者的三脚,柄和脚的三个惯性测量装置来收集真实数据。用两个不同的实验进行ML-IT2-FELM方法的验证。第一个实验涉及识别三种不同的行走活动:水平接地步行(LGW),斜坡上升(RA)和斜坡下降(RD)。第二个实验包括在步态周期期间识别姿态和摆动阶段。此外,为了将ML-IT2-FELM与其他ML模糊方法的效率进行比较,还实施了由内核学习和称为KML-IT2-FELM的基于内核的ML-IT2-FELM。识别行走活动和步态事件的结果,通过ML-IT2-FELM分别达到99.98%和99.84%的平均准确性,分别是290.4ms和105ms的决定时间,而KML-IT2-FELM实现了一个平均准确性为99.98%和99.93%,决定时间为191.9ms和94ms。实验表明,ML-IT2-FELM不仅是在传感器噪声的存在下存在有效的模糊逻辑的方法,也是一种用于识别不同行走活动的快速极限学习机。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号