首页> 外文OA文献 >Deep Machine Learning provides state-of-the-art performance in image-based plant phenotyping
【2h】

Deep Machine Learning provides state-of-the-art performance in image-based plant phenotyping

机译:Deep machine Learning在基于图像的植物表型中提供最先进的性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background: In plant phenotyping, it has become important to be able to measure many features on large image sets in order to aid genetic discovery. The size of the datasets, now often captured robotically, often precludes manual inspection; hence the motivation for finding a fully automated approach. Deep learning is an emerging field that promises unparalleled results on many data analysis problems. Building on artificial neural networks, deep approaches have many more hidden layers in the network, and hence have greater discriminative and predictive power. We demonstrate the use of such approaches as part of a plant phenotyping pipeline. Results: We show the success offered by such techniques when applied to the challenging problem of image-based plant phenotyping, and demonstrate state-of-the-art results (>97% accuracy) for root and shoot feature identification and localisation. We use fully automated trait identification using deep learning to identify quantitative trait loci in root architecture datasets. The majority (12 out of 14) of manually-identified QTL were also discovered using our automated approach based on the deep learning detection to locate plant features. Conclusions: We have shown deep-learning-based phenotyping to have very good detection and localisation accuracy in validation and testing image sets. We have shown that such features can be used to derive meaningful biological traits, which in turn can be used in QTL discovery pipelines. This process can be completely automated. We predict a paradigm shift in image-based phenotyping bought about by such deep learning approaches, given sufficient training sets.
机译:背景:在植物表型分析中,能够测量大图像集上的许多特征以帮助遗传发现变得非常重要。现在通常由机器人自动捕获的数据集的大小通常排除了手动检查的麻烦。因此寻找完全自动化方法的动机。深度学习是一个新兴领域,有望在许多数据分析问题上取得无与伦比的结果。深度方法基于人工神经网络,在网络中具有更多的隐藏层,因此具有更大的判别力和预测力。我们展示了这种方法在植物表型研究中的应用。结果:当将这种技术应用于基于图像的植物表型这一具有挑战性的问题时,我们将展示出这些技术的成功,并展示了用于根和茎特征识别和定位的最新结果(准确度> 97%)。我们使用深度学习使用全自动特征识别,以识别根体系结构数据集中的定量特征基因座。还使用我们的自动方法基于深度学习检测来定位植物特征,从而发现了大多数(14个中的12个)人工识别的QTL。结论:我们已经证明,基于深度学习的表型在验证和测试图像集方面具有非常好的检测和定位精度。我们已经表明,此类功能可用于派生有意义的生物学特征,而这些特征又可用于QTL发现管道。此过程可以完全自动化。在足够的训练集的情况下,我们预计通过这种深度学习方法购买的基于图像的表型将发生范式转变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号