首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Image-Based 3D Object Reconstruction: State-of-the-Art and Trends in the Deep Learning Era
【24h】

Image-Based 3D Object Reconstruction: State-of-the-Art and Trends in the Deep Learning Era

机译:基于图像的3D对象重建:深入学习时代的最先进和趋势

获取原文
获取原文并翻译 | 示例

摘要

3D reconstruction is a longstanding ill-posed problem, which has been explored for decades by the computer vision, computer graphics, and machine learning communities. Since 2015, image-based 3D reconstruction using convolutional neural networks (CNN) has attracted increasing interest and demonstrated an impressive performance. Given this new era of rapid evolution, this article provides a comprehensive survey of the recent developments in this field. We focus on the works which use deep learning techniques to estimate the 3D shape of generic objects either from a single or multiple RGB images. We organize the literature based on the shape representations, the network architectures, and the training mechanisms they use. While this survey is intended for methods which reconstruct generic objects, we also review some of the recent works which focus on specific object classes such as human body shapes and faces. We provide an analysis and comparison of the performance of some key papers, summarize some of the open problems in this field, and discuss promising directions for future research.
机译:3D重建是一种长期存在的不良问题,这已经被计算机视觉,计算机图形和机器学习社区探讨了几十年。自2015年以来,使用卷积神经网络(CNN)的基于图像的3D重建引起了越来越令人兴趣,并表现出令人印象深刻的性能。鉴于这种快速进化的新时代,本文对该领域最近的发展提供了全面的调查。我们专注于使用深度学习技术来估计从单个或多个RGB图像估计普通对象的3D形状的作品。我们基于形状表示,网络架构和他们使用的培训机制组织文献。虽然该调查适用于重建通用物体的方法,但我们还审查了一些最近的作品,这些作品专注于特定的对象类,如人体形状和面孔。我们提供了一些关键论文性能的分析和比较,总结了该领域的一些公开问题,并讨论了未来研究的有希望的方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号