首页> 外文OA文献 >Chemical equilibrium analysis of hydrogen production from shale gas using sorption enhanced chemical looping steam reforming
【2h】

Chemical equilibrium analysis of hydrogen production from shale gas using sorption enhanced chemical looping steam reforming

机译:利用吸附增强化学循环蒸汽重整制备页岩气制氢的化学平衡分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Detailed chemical equilibrium analysis based on minimisation of Gibbs Energy is conducted to illustrate the benefits of integrating sorption enhancement (SE) and chemical looping (CL) together with the conventional catalytic steam reforming (C-SR) process for hydrogen production from a typical shale gas feedstock. CaO(S) was chosen as the CO2 sorbent and Ni/NiO is the oxygen transfer material (OTM) doubling as steam reforming catalyst. Up to 49 % and 52 % rise in H2 yield and purity respectively were achieved with SE-CLSR with a lower enthalpy change compared to C-SR at S:C 3 and 800 K. A minimum energy of 159 kJ was required to produce 1 mole of H2 at S:C 3 and 800 K in C-SR process, this significantly dropped to 34 kJ/mol of produced H2 in the CaO(S) /NiO system at same operating condition without regeneration of the sorbent, when the energy of regenerating the sorbent at 1170 K was included, the enthalpy rose to 92 kJ/mol H2, i.e., significantly lower than the Ca-free system. The presence of inert bed materials in the reactor bed such as catalyst support or degraded CO2 sorbent introduced a very substantial heating burden to bring these materials from reforming temperature to sorbent regeneration temperature or to Ni oxidation temperature. The choice of S:C ratio in conditions of excess steam represents a compromise between the higher H2 yield and purity and lower risk of coking, balanced by the increased enthalpy cost of raising excess steam.
机译:进行了基于吉布斯能量最小化的详细化学平衡分析,以说明将吸附增强(SE)和化学循环(CL)与常规催化蒸汽重整(C-SR)工艺结合在一起以从典型页岩气生产氢气的好处原料。 CaO(S)被选作CO2吸附剂,Ni / NiO被用作氧气转化材料(OTM),是蒸汽重整催化剂的两倍。在C:SR 3和800 K下,与C-SR相比,具有较低的焓变的SE-CLSR分别实现了H2产率和纯度的分别高达49%和52%的提高。要生产1吨,最低能耗为159 kJ在S-C 3和800 K下在C-SR过程中产生的H2摩尔数,在相同的工作条件下,CaO(S)/ NiO系统中产生的H2显着下降到34 kJ / mol,而能量没有吸收剂的再生包括在1170 K下再生吸附剂的热焓,焓升至92 kJ / mol H2,即,显着低于无钙体系。惰性床材料在反应床中的存在,例如催化剂载体或降解的CO 2吸附剂,引入了非常大的加热负担,以使这些材料从重整温度达到吸附剂再生温度或Ni氧化温度。在过量蒸汽条件下选择S:C比率代表了较高的H2收率和纯度与较低的结焦风险之间的折衷,同时通过增加过量蒸汽的焓增加成本来平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号