首页> 外文OA文献 >Outlier-based Health Insurance Fraud Detection for U.S. Medicaid Data
【2h】

Outlier-based Health Insurance Fraud Detection for U.S. Medicaid Data

机译:基于异常值的美国医疗补助数据健康保险欺诈检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fraud, waste, and abuse in the U.S. healthcare system are estimated at $700 billion annually. Predictive analytics offers government and private payers the opportunity to identify and prevent or recover such billings. This paper proposes a data-driven method for fraud detection based on comparative research, fraud cases, and literature review. Unsupervised data mining techniques such as outlier detection are suggested as effective predictors for fraud. Based on a multi-dimensional data model developed for Medicaid claim data, specific metrics for dental providers were developed and evaluated in analytical experiments using outlier detection applied to claim, provider, and patient data in a state Medicaid program. The proposed methodology enabled successful identification of fraudulent activity, with 12 of the top 17 suspicious providers (71%) referred to officials for investigation with clearly anomalous and inappropriate activity. Future research is underway to extend the method to other specialties and enable its use by fraud analysts.
机译:美国医疗保健系统中的欺诈,浪费和滥用估计每年达7000亿美元。预测分析为政府和私人付款人提供了识别,防止或追回此类账单的机会。本文基于比较研究,欺诈案例和文献综述,提出了一种数据驱动的欺诈检测方法。建议采用无监督数据挖掘技术(例如异常值检测)作为欺诈的有效预测指标。基于为医疗补助申请数据开发的多维数据模型,使用适用于国家医疗补助计划中索赔,提供者和患者数据的异常检测,在分析实验中开发并评估了牙科提供者的特定指标。所提出的方法使成功识别欺诈活动成为可能,在17个可疑提供者中有12个(占71%)转交给官员进行了明显异常和不适当活动的调查。正在进行进一步的研究以将该方法扩展到其他专业领域,并使其能够被欺诈分析人员使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号