首页> 外文OA文献 >Deriving closures for bubbly flows using direct numerical simulations
【2h】

Deriving closures for bubbly flows using direct numerical simulations

机译:使用直接数值模拟得出气泡流的闭合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

CFD modeling of dispersed multiphase flows can be quite challenging because of the wide range of time- and length-scales involved. A modern methodology to bridge the different scales is multi-scale modeling, which involves applying different (types of) models to describe phenomena prevailing at different time and length scales. This approach requires however, closure equations for the unresolved sub-grid phenomena in the higher level models. These closures can in principle be obtained from analytical theory, experiments and direct numerical simulations (DNS), each with their own strong and weak points. Analytical theory is limited to idealized situations, for instance spherical bubbles in the limit of high Reynolds numbers, while experiments are timeconsuming, costly and easily influenced by disturbances and contaminations and often not all relevant quantities can be measured simultaneously and with the desired accuracy. A third and relatively new path is to use DNS, which is not restricted to any idealized situation nor suffers from experimental difficulties. One of the strongest points is the freedom to change any of the physical properties or other parameters (geometry, operating parameters, etc.) at will and study their influence independently at great detail, having all the information on all variables (such as flow field, pressure field, etc.) available. The objective of this thesis was to improve a 3D Front Tracking model and to use it to obtain closures for the drag, lift and virtual mass forces acting on single bubbles rising in an initially quiescent infinite liquid. Using periodic boundary conditions, also the influence of neighboring bubbles (referred to as ‘swarm effects’) on the drag force was studied. In addition, dedicated experiments have been performed to validate the numerical results for the drag and lift forces acting on single bubbles.
机译:分散的多相流的CFD建模可能具有很大的挑战性,因为涉及的时间和长度范围很广。跨不同尺度的现代方法是多尺度建模,它涉及应用不同的(类型)模型来描述在不同的时间尺度和长度尺度上普遍存在的现象。但是,这种方法需要针对更高级别模型中未解决的子网格现象的闭合方程。这些闭包原则上可以从分析理论,实验和直接数值模拟(DNS)中获得,每种方法都有其优缺点。分析理论仅限于理想情况,例如雷诺数较高时的球形气泡,而实验既费时,昂贵又容易受到干扰和污染的影响,并且通常并非所有相关量都能同时以所需的精度进行测量。第三种相对较新的途径是使用DNS,这不仅限于任何理想情况,也没有实验困难。最强的优点之一是可以自由更改任何物理特性或其他参数(几何形状,操作参数等),并可以独立详细地研究其影响,从而获得有关所有变量(例如流场)的所有信息的自由。 ,压力场等)。本文的目的是改进3D前沿跟踪模型,并使用该模型来获取作用在初始静态无限液体中上升的单个气泡上的阻力,升力和虚拟质量力的闭合力。使用周期性边界条件,还研究了相邻气泡对拖曳力的影响(称为“群效应”)。此外,已经进行了专门的实验来验证作用在单个气泡上的阻力和升力的数值结果。

著录项

  • 作者

    Dijkhuizen Wouter;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号