首页> 外文OA文献 >Energy-Efficient Data Acquisition By Adaptive Sampling for Wireless Sensor Networks
【2h】

Energy-Efficient Data Acquisition By Adaptive Sampling for Wireless Sensor Networks

机译:通过自适应采样实现无线传感器网络的能量有效数据采集

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Wireless sensor networks (WSNs) are well suited for environment monitoring. However, some highly specialized sensors (e.g. hydrological sensors) have high power demand, and without due care, they can exhaust the battery supplyudquickly. Taking measurements with this kind of sensors can also overwhelm the communication resources by far. One way to reduce the power drawn by these high-demand sensors is adaptive sampling, i.e., to skip sampling when data loss is estimated to be low. Here, we present an adaptive sampling algorithm based on the Box-Jenkins approach in time series analysis. To measure the performance of our algorithms, we use the ratio of the reduction factor to root mean square error (RMSE). The rationale of the metric is that the best algorithm is the algorithm that gives the most reduction in the amount of sampling and yet the the smallest RMSE. For the datasets used in our simulations, our algorithm is capable of reducing the amount of sampling by 24% to 49%. For seven out of eight datasets, our algorithm performs better than the best in the literature so far in terms of the reduction/RMSE ratio.
机译:无线传感器网络(WSN)非常适合于环境监视。但是,某些高度专业化的传感器(例如水文传感器)对功率的要求很高,并且如果不加注意,它们可能会迅速耗尽电池的电量。用这种传感器进行测量也可能使通信资源不堪重负。降低这些高需求传感器消耗的功率的一种方法是自适应采样,即在估计数据丢失较低时跳过采样。在这里,我们提出一种基于Box-Jenkins方法的时间序列分析自适应采样算法。为了衡量我们算法的性能,我们使用减少因子与均方根误差(RMSE)的比率。度量的基本原理是,最佳算法是可以最大程度减少采样量而最小的RMSE的算法。对于我们的仿真中使用的数据集,我们的算法能够将采样量减少24%至49%。在八分之七的数据集中,我们的算法在减少/ RMSE方面的表现优于迄今为止的最佳文献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号