首页> 外文OA文献 >Towards Chemical Imaging of Living Cells: Design and Application of a Confocal Raman Microscope
【2h】

Towards Chemical Imaging of Living Cells: Design and Application of a Confocal Raman Microscope

机译:对活细胞的化学成像:共聚焦拉曼显微镜的设计和应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Raman microspectroscopy is a technique that can be used to obtainudinformation about the chemical composition of a very small measurementudvolume (0.5 fl) in a (biological) sample. Molecules present in the sampleudcan be identified based on their scattering characteristics and no specialudtreatment or preparation of the samples is necessary. Therefore, biologicaludsamples can be measured under physiological conditions and reactions inudliving cells can be monitored.udWe have developed a Confocal Direct Imaging Raman Microscopeud(CDIRM) which enables the measurement of both Raman microspectra ofuda small measurement volume and of Raman images which show theuddistribution of a specific compound over the sample. The CDIRM is theudfirst example in literature of a confocal microscope which is based uponuddirect imaging. All currently used confocal Raman microscopes work withudimage reconstruction. Direct imaging has several advantages among whichudthe shorter measurement times that can be used in most applications.udIn chapter 2 the design of the system has been discussed and its mainsudcharacteristics, like resolution and image quality have been described. Theudresolution of the set up as determined with a 0.282 μm sphere appeared toudbe 0.37 μm in the lateral direction and 1.2 μm in the axial direction (FulludWidth at Half Maximum (FWHM)). The resolution for a 275 nm layer wasuddetermined to be 1.4 μm in the axial direction. We have demonstrated thatudhigh resolution Raman images of biological samples can be made with theudCDIRM. Raman images have been measured of the DNA and proteinuddistribution in a polytene chromosome. These images illustrate theudcapability of our system to make Raman images of a sample with audrelatively weak Raman signal: only 0.1 photons/(second×pixel) wereuddetected. Further, we have shown that our system can be used to make 3-uddimensional Raman images of biological samples. 3-dimensional images ofudthe distribution of a drug in a living cell and of cholesterol in an eye lensudslice have been presented.udRaman microspectroscopy is one of the few techniques that enables theudmonitoring of processes in single living cells, without chemical treatmentudof the sample which might disturb the cellular system. In chapter 3 Ramanudmeasurements on single activated human neutrophilic and eosinophilicudgranulocytes have been shown. The granulocytes were activated byudaddition of the soluble activator Phorbol Myristate Acetate or byudopsonized particles. Raman spectra were measured in the cytoplasm andudthe phagosome of activated granulocytes. The resulting spectra wereudyud123udcompared with spectra of the native cells and clear differences could beudrecognized. The results indicated an intracellular reduction of bothudMyeloperoxidase and cytochrome b558, two heme-proteins which areudknown to play a role in the human immune system.udAn important advantage of Raman imaging compared to fluorescenceudimaging is that no extrinsic labels have to be introduced to distinguishudspecific molecules. However, in samples with a low concentration of weakudRaman scattering molecules it can be advantageous to introduce extrinsicudlabels. These Raman labels should bind specifically to the molecules ofudinterest and have a relatively large Raman scattering cross section. Inudcertain applications it can be preferable to use such Raman labels insteadudof fluorescent labels, because of their much narrower bandwidth, whichudallows the detection of many more different labels in a limited wavelengthudrange and because they do not bleach. In chapter 4 two examples ofudextrinsic Raman labeling have been demonstrated: the use of theudcholesterol specific label filipin for visualizing the cholesterol distributionudin an eye lens and the application of antibody coated polystyrene spheresudto distinguish different phenotypes of human leukocytes. Further, auddiscussion is given about which molecules and structures can be used inudthe development of other suitable Raman labels.
机译:拉曼显微光谱法是一种技术,可用于获得有关(生物)样品中非常小的测量值/体积(0.5 fl)的化学成分的信息。样品 ud中存在的分子可以根据其散射特性进行识别,无需特殊的 ud处理或样品制备。因此,可以在生理条件下测量生物样品 ud样品,并可以监测存活细胞中的反应。 ud我们开发了一种共聚焦直接成像拉曼显微镜 ud(CDIRM),可以同时测量小体积的拉曼显微光谱。拉曼图像显示特定化合物在样品中的分布。 CDIRM是基于共聚焦显微镜的共聚焦显微镜文献中的第一个例子。当前使用的所有共焦拉曼显微镜都可以 udimage重建。直接成像具有许多优点,其中可以在大多数应用中使用较短的测量时间。 ud在第二章中,讨论了系统的设计并描述了其主要特征/特性,例如分辨率和图像质量。由0.282μm的球所确定的装置的 u分辨率似乎在横向上为 u3d u003d u003d u003d u003d u u u u u200b u200b u200b u200b u200b u200b u200b u200b u200b u200b轴向轴向为1.2μm(半最大全宽(FWHM))。 275nm层的分辨率在轴向上确定为1.4μm。我们已经证明,可以使用 udCDIRM来制作生物样品的高分辨率的拉曼图像。拉曼图像已经测量了多态染色体中DNA和蛋白质的分布。这些图像说明了我们系统对具有相对弱的拉曼信号的样品制作拉曼图像的能力:仅检测到0.1个光子/(第二×像素)。此外,我们已经表明,我们的系统可以用于制作生物样品的3维三维拉曼图像。已经给出了在活细胞中的药物分布和在眼透镜 udslice中的胆固醇的三维图像。 udRaman显微技术是少数能够在没有活细胞的情况下监测单个活细胞过程的技术之一。样品的化学处理可能会干扰细胞系统。在第3章中,已经显示了对单个激活的人类嗜中性粒细胞和嗜酸性粒细胞的拉曼测量。通过添加可溶性活化剂肉豆蔻酸乙酸佛波酯或通过超声处理颗粒来活化粒细胞。在活化的粒细胞的细胞质和吞噬体中测量拉曼光谱。所得的光谱与天然细胞的光谱相比 udy ud123 ud,并且可以清楚地识别差异。结果表明胞内髓过氧化物酶和细胞色素b558都在细胞内减少,这两种血红素蛋白在人的免疫系统中发挥作用。与拉曼成像相比,拉曼成像的一个重要优点是没有外部标记引入以区分非特异分子。但是,在弱浓度的弱 udRaman散射分子样品中,引入外源性 udlabel可能是有利的。这些拉曼标记应与感兴趣的分子特异性结合,并具有较大的拉曼散射截面。在某些应用中,最好使用此类拉曼标记代替荧光标记,因为它们的带宽要窄得多,这使得在有限的波长范围内检测到更多不同的标记,并且它们不会漂白。在第4章中,已经证明了 udextrinsic拉曼标记的两个示例:使用 ud胆固醇特定标记的filipin来可视化胆固醇分布 udin在眼镜片中的应用以及应用抗体包被的聚苯乙烯球体 ud来区分人类白细胞的不同表型。此外,讨论了哪些分子和结构可用于其他合适的拉曼标记的开发。

著录项

  • 作者

    Sijtsema Nanna Maria;

  • 作者单位
  • 年度 1997
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号