We consider the local eigenvalue statistics of large self-adjoint $N imes N$ - random matrices, $mathbf{H}=mathbf{H}^*$, with centred independent entries. In contrast to previous works the matrix of variances, $s_{i j}= mathbb{E},|h_{i j}|^2$, is not assumed to be stochastic. Hence the density of states is not the Wigner semicircle law. In this work we prove that as $N$ tends to infinity the $k$ - point correlation function of finitely many eigenvalues becomes universal, i.e., it depends only on the symmetry class of the underlying random matrix ensemble and not on the distributions of its entries. udThe proof consists of three major steps. In the first step we analyse the solution, $mathbf{m}(z)=(m_1(z), dots, m_N(z))$, of the quadratic vector equation (QVE), $-1/m_i(z)= z+ sum_j s_{i j}m_j(z)$, for any complex number $z$. We show that the entries, $m_i$, can be represented as Stieltjes transforms of probability densities on the real line. We characterise these densities in terms of their singularities, which are algebraic of degree at most three. We present a complete stability analysis of the QVE everywhere, including the vicinity of the singularities. This stability analysis is used in the second step. Here we prove that the diagonal elements of the resolvent, $mathbf{G} = (mathbf{H}-z)^{-1}$, satisfy the perturbed QVE, $-1/G_{ii}(z)= z+ sum_j s_{i j}G_{jj}(z)+d_i(z)$, with a random noise vector $mathbf{d}$. We show that as $N$ grows the noise vanishes and the resolvent is close to the deterministic diagonal matrix $ext{diag}(m_1, dots, m_N)$. This result is shown with a precision down to the finest spectral scale, just above the typical eigenvalue spacing. It thus implies the local law and rigidity of the eigenvalue positions for this random matrix model. In the third and final step, we use the Dyson-Brownian-motion to establish universality of the local eigenvalue statistics.
展开▼
机译:我们考虑具有自相关项的大型自伴$ N times N $-随机矩阵$ mathbf {H} = mathbf {H} ^ * $的局部特征值统计。与以前的工作相反,方差矩阵$ s_ {i j} = mathbb {E} ,| h_ {i j} | ^ 2 $不被认为是随机的。因此,状态密度不是维格纳半圆定律。在这项工作中,我们证明了随着$ N $趋于无穷大,有限多个特征值的$ k $-点相关函数变得通用,即,它仅取决于基础随机矩阵集合的对称类,而不取决于其随机分布。条目。 ud证明包括三个主要步骤。在第一步中,我们分析二次向量方程(QVE)的解决方案$ mathbf {m}(z)=(m_1(z), dots,m_N(z))$,$ -1 / m_i(对于任何复数$ z $,z)= z + sum_j s_ {ij} m_j(z)$。我们证明,$ m_i $项可以表示为实线上概率密度的Stieltjes变换。我们用它们的奇异性来表征这些密度,奇异性最多是度的代数。我们在各处(包括奇异点附近)都对QVE进行了完整的稳定性分析。第二步使用此稳定性分析。在这里,我们证明了旋转子的对角元素$ mathbf {G} =( mathbf {H} -z)^ {-1} $满足扰动的QVE,$-1 / G_ {ii}(z) = z + sum_j s_ {ij} G_ {jj}(z)+ d_i(z)$,具有随机噪声矢量$ mathbf {d} $。我们表明,随着$ N $的增长,噪声消失,分解器接近确定性对角矩阵$ text {diag}(m_1, dots,m_N)$。精确到典型光谱的特征值间隔,可以精确到最低的光谱范围显示结果。因此,这暗示了该随机矩阵模型的局部定律和特征值位置的刚性。在第三步也是最后一步,我们使用戴森布朗运动建立局部特征值统计的通用性。
展开▼