首页> 外文OA文献 >Molecular dynamics simulations of protein-protein interactions and THz driving of molecular rotors on gold
【2h】

Molecular dynamics simulations of protein-protein interactions and THz driving of molecular rotors on gold

机译:分子动力学模拟蛋白质 - 蛋白质相互作用和THz驱动金分子转子

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The scope of this work is to gain insight and a deeper understanding of exploring and controlling molecular devices like proteins and rotors by fine tuned manipulation via mechanical or electrical energies.I focus on three main topics.First, I investigate vectorial forces as a tool to explore the energy landscape of protein complexes. Second, I apply this method to a biologically important force transduction complex, the integrin-talin complex. Third, I use Terahertz electric fields to manipulate the energy landscape of a molecular rotor on a gold surface and drive their effective rotation bidirectionally.Force is by nature a vector and depends on its three parameters: magnitude, direction and attachment point. Here, the impact of different force protocols varying these parameters is shown for an antibody-antigen complex and the ribonuclease-inhibitor complex barnase-barstar.Antibodies are essential for our adaptive immune system in their function to bind specific antigens. Here, the binding of an antibody to a peptide is probed with varying attachment points. Different attachment points clearly change the dissociation pathways. The barriers identified using experimental atomic force microscopy (AFM) and molecular dynamics (MD) simulations are in excellent agreement. I determine the molecular interactions of two main barriers for each setup. This results in a common outer barrier of the complex and different inner barriers probed by AFM.The ribonuclease barnase and its inhibitor barstar form an evolutionary optimized complex. Different force protocols are shown to determine the hierarchy of relative stability within a protein complex.For the barnase-barstar complex, the internal fold of the barstar is identified to be less stable than the barnase-barstar binding interaction. High velocities probe the lability or barriers of the system while low velocities probe the stability or energy wells of this system.Forces impact biological life on totally different length scales which range from whole organisms to individual proteins. Integrins are the major cell adhesion receptors binding to the extracellular matrix and talin. Talin activates the integrins and creates the initial connection to the actin cytoskeleton of the cell. Here, I have chosen to investigate the integrin-talin complex as a biologically important force transduction complex. The force dependence of the system is probed by constant force MD simulations. The two main results include the activation of the complex and its force response. I demonstrate, that the binding of talin to integrin does not disrupt the integrin's transmembrane helix interactions sterically. Since, this disruption is necessary for integrin activation, a modified activation mechanism requiring a small force application is proposed. The response of the integrin-talin complex normal and parallel to the cell membrane is analyzed. The complete dissociation pathways generated for both directions identify a force-induced formation of a stabilizing beta strand between integrin and talin only for normal forces. Furthermore, the complex tries to rotate such that the external force aligns with the more force resistant axis of the complex.In nature, molecular rotors are essential building blocks of many molecular machines and brownian motors like the F1-ATPase or the flagellum of a bacterium. The direction of rotation often steers different processes in clockwise and counterclockwise directions. Rotation on the nanoscopic level in artificial devices is still very limited and requires a deeper understanding.In my last project, I study the switching and driving of a molecular diethylsulfid rotor on a gold (111) surface by Terahertz electric fields. The response of the rotational energy landscape to static and oscillation electric fields is analyzed. Varying the Terahertz driving frequency, the rotation direction and frequency are controlled. A theoretical framework is presented to describe the behavior of the molecular rotor. This can be seen as the first step into the direction of man-made controllable nano-devices driven and controlled by energy from the electric wall-socket.
机译:这项工作的范围是通过机械或电能的微调操纵来探索和控制蛋白质和转子等分子装置,从而获得见识和更深刻的理解。我专注于三个主要主题:首先,我研究了矢量力作为一种工具探索蛋白质复合物的能量格局。其次,我将此方法应用于生物学上重要的力转导复合物,整联蛋白-塔林复合物。第三,我使用太赫兹电场来操纵分子转子在金表面上的能量分布并双向驱动其有效旋转。力本质上是向量,取决于其三个参数:大小,方向和附着点。此处显示了改变这些参数的不同作用力方案对抗体-抗原复合物和核糖核酸酶-抑制剂复合物barnase-barstar的影响。抗体对于我们的适应性免疫系统结合特定抗原的功能至关重要。在此,以变化的附着点探测抗体与肽的结合。不同的附着点明显改变了解离途径。使用实验原子力显微镜(AFM)和分子动力学(MD)模拟确定的壁垒非常吻合。我确定每种设置的两个主要障碍的分子相互作用。这导致了复合物的共同外部屏障和AFM探测到的不同内部屏障。核糖核酸酶barnase及其抑制剂barstar形成了进化优化复合物。显示了不同的作用规程来确定蛋白质复合物中的相对稳定性层次结构。对于barnase-barstar复合物,barstar的内部折叠被确定为不如barnase-barstar结合相互作用稳定。高速探测系统的不稳定或障碍,而低速探测系统的稳定性或能量井。力以完全不同的长度尺度影响生物生命,从整个生物体到单个蛋白质。整联蛋白是与细胞外基质和塔林结合的主要细胞粘附受体。塔林激活整联蛋白并建立与肌动蛋白细胞骨架的初始连接。在这里,我选择研究整联蛋白-塔林复合物作为生物学上重要的力传导复合物。该系统的力依赖性通过恒力MD模拟进行探查。两个主要结果包括复合物的活化及其力响应。我证明,塔林与整联蛋白的结合不会在空间上破坏整联蛋白的跨膜螺旋相互作用。由于这种破坏对于整联蛋白激活是必需的,因此提出了一种需要较小的力施加的改进的激活机制。分析整联蛋白-塔林复合物正常和平行于细胞膜的反应。为两个方向生成的完整解离路径仅在法向力的情况下才能确定力诱导的整联蛋白和塔林蛋白之间稳定的β链的形成。此外,复合体会尝试旋转以使外力与复合体的抗力轴对齐。自然界中,分子转子是许多分子机器和布朗电机(例如F1-ATPase或细菌的鞭毛)的必不可少的组成部分。旋转方向通常会沿顺时针和逆时针方向操纵不同的过程。人造设备中纳米级的旋转仍然非常有限,需要更深入的了解。在我的上一个项目中,我研究了太赫兹电场在金(111)表面上分子二乙硫醚转子的转换和驱动。分析了旋转能态对静态和振荡电场的响应。改变太赫兹驱动频率,可以控制旋转方向和频率。提出了一个理论框架来描述分子转子的行为。这可以看作是进入人造可控纳米设备方向的第一步,该设备由来自壁挂式电插座的能量驱动和控制。

著录项

  • 作者

    Neumann Jan;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号