首页> 外文OA文献 >BEETLE II: Deep Natural Language Understanding and Automatic Feedback Generation for Intelligent Tutoring in Basic Electricity and Electronics
【2h】

BEETLE II: Deep Natural Language Understanding and Automatic Feedback Generation for Intelligent Tutoring in Basic Electricity and Electronics

机译:BEETLE II:基础电力电子智能辅导的深层自然语言理解和自动反馈生成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Within STEM domains, physics is considered to be one of the most difficult topics to master, in part because many of the underlying principles are counter-intuitive. Effective teaching methods rely on engaging the student in active experimentation and encouraging deep reasoning, often through the use of self-explanation. Supporting such instructional approaches poses a challenge for developers of Intelligent Tutoring Systems. We describe a system that addresses this challenge by teaching conceptual knowledge about basic electronics and electricity through guided experimentation with a circuit simulator and reflective dialogue to encourage effective self-explanation. The Basic Electricity and Electronics Tutorial Learning Environment (BEETLE II) advances the state of the art in dynamic adaptive feedback generation and natural language processing (NLP) by extending symbolic NLP techniques to support unrestricted student natural language input in the context of a dynamically changing simulation environment in a moderately complex domain. This allows contextually-appropriate feedback to be generated “on the fly” without requiring curriculum designers to anticipate possible student answers and manually author multiple feedback messages. We present the results of a system evaluation. Our curriculum is highly effective, achieving effect sizes of 1.72 when comparing pre- to post-test learning gains from our system to those of a no-training control group. However, we are unable to demonstrate that dynamically generated feedback is superior to a non-NLP feedback condition. Evaluation of interpretation quality demonstrates its link with instructional effectiveness, and provides directions for future research and development.
机译:在STEM领域中,物理被认为是最难掌握的主题之一,部分原因是许多基本原理是违反直觉的。有效的教学方法依赖于让学生积极参与实验并鼓励深入的推理,这通常是通过自我解释来实现的。支持这种教学方法对智能辅导系统的开发人员构成了挑战。我们描述了一种系统,该系统通过使用电路模拟器进行引导性实验并进行反思性对话以鼓励有效的自我解释,通过教授有关基本电子和电气的概念性知识来应对这一挑战。基础电子电气教程学习环境(BEETLE II)通过扩展符号NLP技术来支持动态自适应反馈生成和自然语言处理(NLP)中的最新技术,以在动态变化的模拟环境中支持不受限制的学生自然语言输入中等复杂域中的环境。这样就可以“即时”生成上下文相关的反馈,而无需课程设计者预期可能的学生答案并手动编写多个反馈消息。我们介绍系统评估的结果。我们的课程非常有效,将我们系统中的测试前和测试后学习收益与未培训对照组的学习收益进行比较时,效果等级为1.72。但是,我们无法证明动态生成的反馈优于非NLP反馈条件。对口译质量的评估证明了其与教学效果的联系,并为未来的研究和开发提供了指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号