首页> 外文OA文献 >Bayesian analysis of wandering vector models for displaying ranking data
【2h】

Bayesian analysis of wandering vector models for displaying ranking data

机译:用于显示排序数据的漫游矢量模型的贝叶斯分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In a process of examining k objects, each judge provides a ranking of them. The aim of this paper is to investigate a probabilistic model for ranking data - the wandering vector model. The model represents objects by points in a d-dimensional space, and the judges are represented by latent vectors emanating from the origin in the same space. Each judge samples a vector from a multivariate normal distribution; given this vector, the judge's utility assigned to an object is taken to be the length of the orthogonal projection of the object point onto the judge vector, plus a normally distributed random error. The ordering of the k utilities given by the judge determines the judge's ranking. A Bayesian approach and the Gibbs sampling technique are used for parameter estimation. The method of computing the marginal likelihood proposed by Chib (1995) is used to select the dimensionality of the model. Simulations are done to demonstrate the proposed estimation and model selection method. We then analyze the Goldberg data, in which 10 occupations are ranked according to the degree of social prestige.
机译:在检查k个对象的过程中,每个法官都会对它们进行排名。本文的目的是研究一种对数据进行排序的概率模型-流浪矢量模型。该模型用d维空间中的点表示对象,而判断者则用同一空间中从原点发出的潜在矢量表示。每个法官都从多元正态分布中采样向量;给定该向量,将分配给对象的法官的效用作为对象点在法官向量上的正交投影的长度加上正态分布的随机误差。法官给定的k个实用程序的顺序确定了法官的排名。贝叶斯方法和吉布斯采样技术用于参数估计。 Chib(1995)提出的计算边际可能性的方法用于选择模型的维数。仿真表明了提出的估计和模型选择方法。然后,我们分析Goldberg数据,其中根据社会声望的程度对10个职业进行了排名。

著录项

  • 作者

    Chan LKY; Yu PLH;

  • 作者单位
  • 年度 2001
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号