首页> 外文期刊>Statistical Methods and Applications >Bayesian analysis of ranking data with the Extended Plackett-Luce model
【24h】

Bayesian analysis of ranking data with the Extended Plackett-Luce model

机译:扩展Plackett-Luce模型的贝叶斯分析数据

获取原文
获取原文并翻译 | 示例

摘要

Multistage ranking models, including the popular Plackett-Luce distribution (PL), rely on the assumption that the ranking process is performed sequentially, by assigning the positions from the top to the bottom one (forward order). A recent contribution to the ranking literature relaxed this assumption with the addition of the discrete-valuedreference orderparameter, yielding the novelExtended Plackett-Luce model(EPL). Inference on the EPL and its generalization into a finite mixture framework was originally addressed from the frequentist perspective. In this work, we propose the Bayesian estimation of the EPL in order to address more directly and efficiently the inference on the additional discrete-valued parameter and the assessment of its estimation uncertainty, possibly uncovering potential idiosyncratic drivers in the formation of preferences. We overcome initial difficulties in employing a standard Gibbs sampling strategy to approximate the posterior distribution of the EPL by combining the data augmentation procedure and the conjugacy of the Gamma prior distribution with a tuned joint Metropolis-Hastings algorithm within Gibbs. The effectiveness and usefulness of the proposal is illustrated with applications to simulated and real datasets.
机译:多级排名模型,包括流行的Plackett-Luce分布(PL),依靠假设按顺序执行排名处理,通过将位置从顶部分配给底部(正向顺序)来顺序执行。最近对排名文献的贡献随着添加离散值的命令令参数而放松了这种假设,从而产生了新的展开的Plackett-Luce模型(EPL)。对EPL的推断及其在有限混合框架中的概括最初从常见的角度出发。在这项工作中,我们提出了EPL的贝叶斯估计,以便更直接和有效地对额外的离散值参数进行推断和评估其估算不确定性,可能在形成偏好中揭示潜在的特质司机。我们通过将数据增强程序和Gamma先前分配与Gibbs内的调谐联合大都会 - Hasting算法组合来克服标准GIBBS采样策略来克服初步困难以近似EPL的后验策略。该提案的有效性和有用性被仿真和实际数据集的应用说明。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号