首页> 外文OA文献 >Design of constrained causal stable IIR filters using a new second- order-cone-programming-based model-reduction technique
【2h】

Design of constrained causal stable IIR filters using a new second- order-cone-programming-based model-reduction technique

机译:使用新的基于二阶锥编程的模型简化技术设计约束因果稳定IIR滤波器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This brief proposes a new method for designing infinite-impulse response (IIR) filter with peak error and prescribed flatness constraints. It is based on the model reduction of a finite-impulse response function that satisfies the specification by extending a method previously proposed by Brandenstein et al. The proposed model-reduction method retains the denominator of the conventional techniques and formulates the optimal design of the numerator as a second-order cone programming problem. Therefore, linear and convex quadratic inequalities such as peak error constraints and prescribed number of zeros at the stopband for IIR filters can be imposed and solved optimally. Moreover, a method is proposed to express the denominator of the model-reduced IIR filter as a polynomial in integer power of z, which efficiently facilitates its polyphase implementation in multirate applications. Design examples show that the proposed method gives better performance, and more flexibility in incorporating a wide variety of constraints than conventional methods. © 2007 IEEE.
机译:本摘要提出了一种设计具有峰值误差和规定平坦度约束的无限脉冲响应(IIR)滤波器的新方法。它基于通过扩展Brandenstein等人先前提出的方法来满足规格的有限冲激响应函数的模型简化。提出的模型简化方法保留了传统技术的分母,并将分子的最佳设计公式化为二阶锥规划问题。因此,可以强加并解决线性和凸二次不等式,例如峰值误差约束和IIR滤波器阻带处规定的零个数。此外,提出了一种将简化模型的IIR滤波器的分母表示为z的整数次幂的多项式的方法,该方法可有效地促进其在多速率应用中的多相实现。设计实例表明,与传统方法相比,所提出的方法在合并各种约束时具有更好的性能和更大的灵活性。 ©2007 IEEE。

著录项

  • 作者

    Chan SC; Tse KW; Tsui KM;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号