首页> 外文OA文献 >Online algorithms for 1-space bounded multi dimensional bin packing and hypercube packing
【2h】

Online algorithms for 1-space bounded multi dimensional bin packing and hypercube packing

机译:1空间有界多维箱包装和超立方包装的在线算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we study 1-space bounded multi-dimensional bin packing and hypercube packing. A sequence of items arrive over time, each item is a d-dimensional hyperbox (in bin packing) or hypercube (in hypercube packing), and the length of each side is no more than 1. These items must be packed without overlapping into d-dimensional hypercubes with unit length on each side. In d-dimensional space, any two dimensions i and j define a space P ij. When an item arrives, we must pack it into an active bin immediately without any knowledge of the future items, and 90 {ring operator}-rotation on any plane P ij is allowed. The objective is to minimize the total number of bins used for packing all these items in the sequence. In the 1-space bounded variant, there is only one active bin for packing the current item. If the active bin does not have enough space to pack the item, it must be closed and a new active bin is opened. For d-dimensional bin packing, an online algorithm with competitive ratio 4 d is given. Moreover, we consider d-dimensional hypercube packing, and give a 2 d+1-competitive algorithm. These two results are the first study on 1-space bounded multi dimensional bin packing and hypercube packing. © 2012 The Author(s).
机译:在本文中,我们研究一维有界的多维装箱和超立方体装箱。物品随时间推移到达的顺序,每个物品都是d维超级箱(在装箱中)或超立方体(在超立方体装箱中),每边的长度不超过1。这些物品必须包装成不与d重叠维度超立方体,每边具有单位长度。在d维空间中,任意二维i和j都定义一个空间P ij。当物品到达时,我们必须立即将其包装到活动箱中,而无需任何未来物品的知识,并且允许在任何平面P ij上旋转90 {环操作符}。目的是最小化用于包装序列中所有这些物品的箱的总数。在1空间有界变体中,只有一个活动箱用于包装当前物品。如果活动箱没有足够的空间来包装物品,则必须将其关闭并打开新的活动箱。对于d维箱装箱,给出了竞争比为4 d的在线算法。此外,我们考虑了d维超立方体包装,并给出了2 d + 1竞争算法。这两个结果是对1空间有界多维bin装箱和超立方体装箱的首次研究。 ©2012作者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号