首页> 外文OA文献 >A tensor-based Volterra series black-box nonlinear system identification and simulation framework
【2h】

A tensor-based Volterra series black-box nonlinear system identification and simulation framework

机译:基于张量的Volterra系列黑箱非线性系统辨识与仿真框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Tensors are a multi-linear generalization of matrices to their d-way counterparts, and are receiving intense interest recently due totheir natural representation of high-dimensional data and the availabilityof fast tensor decomposition algorithms. Given the inputoutput data of a nonlinear system/circuit, this paper presents a nonlinear model identification and simulation framework built on top of Volterra series and its seamless integration with tensor arithmetic. By exploiting partially-symmetric polyadic decompositions of sparse Toeplitz tensors, the proposed framework permits a pleasantly scalable way to incorporate high-order Volterra kernels. Such an approach largely eludes the curse of dimensionality and allows computationally fast modeling and simulation beyond weakly nonlinear systems. The black-box nature of the model also hides structural information of the system/circuit and encapsulates it in termsof compact tensors. Numerical examples are given to verify the efficacy, efficiency and generality of this tensor-based modeling and simulation framework.
机译:张量是矩阵到d向对应物的多线性泛化,由于其自​​然表示高维数据和快速张量分解算法的可用性,最近受到了广泛的关注。给定非线性系统/电路的输入输出数据,本文提出了一种基于Volterra级数及其与张量算法的无缝集成的非线性模型识别和仿真框架。通过利用稀疏的Toeplitz张量的部分对称多元分解,所提出的框架允许采用令人愉快的可扩展方式来合并高阶Volterra内核。这种方法在很大程度上避免了维数的诅咒,并允许在较弱的非线性系统之外进行计算快速的建模和仿真。模型的黑匣子性质还隐藏了系统/电路的结构信息,并以紧凑的张量将其封装。数值例子验证了这种基于张量的建模和仿真框架的有效性,效率和通用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号