首页> 外文OA文献 >Automatic ECG artifact removal in the real-time SEMG recording system
【2h】

Automatic ECG artifact removal in the real-time SEMG recording system

机译:在实时sEmG记录系统中自动去除ECG伪影

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The contaminated electrocardiography (ECG) is a big problem in the surface electromyography (SEMG) signal detection and analysis. The objective of the current study is to propose and validate an algorithm for the automated feature cognition and identification for eliminating ECG artifact from the raw SEMG signals. The utilization of Independent Component Analysis (ICA) method is to decompose the raw SEMG signals into individual independent source components. After that, some of the independent source components with the characteristics of ECG artifact were detected by the automated identification algorithm and thereafter eliminated. The sensitivity and specificity of the algorithm for distinguishing ECG source components from independent source components are 100% and 99% respectively. The automated identification algorithm exhibits the prominent performance of recognition for ECG artifact and can be considered reliable and effective.
机译:污染的心电图(ECG)是表面肌电图(SEMG)信号检测和分析中的一个大问题。当前研究的目的是提出并验证一种用于自动特征识别和识别的算法,以从原始SEMG信号中消除ECG伪影。独立分量分析(ICA)方法的使用是将原始SEMG信号分解为单独的独立源分量。之后,通过自动识别算法检测到一些具有ECG伪影特征的独立源分量,然后将其消除。区分心电图来源成分与独立来源成分的算法的灵敏度和特异性分别为100%和99%。自动识别算法展现出对ECG伪影的卓越识别性能,可以被认为是可靠有效的。

著录项

  • 作者

    Hu Y; Tse J; Kwok J;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号