首页> 外文期刊>Biomedical signal processing and control >Design of an automatic hybrid system for removal of eye-blink artifacts from EEG recordings
【24h】

Design of an automatic hybrid system for removal of eye-blink artifacts from EEG recordings

机译:从EEG录制中删除眼睛眨眼伪像的自动混合系统设计

获取原文
获取原文并翻译 | 示例

摘要

Electroencephalography (EEG) signals are frequently used in several areas, such as diagnosis of diseases and BCI applications. It is important to remove noise sources for applications using EEG. This paper introduces a hybrid system to automatically remove eye-blink artifacts from the EEG by combining several methods, such as Independent Component Analysis (ICA), Kurtosis, K-means, Modified Z-Score (MZS) and Adaptive Noise Canceller (ANC). In the proposed method, all EEG recordings are first decomposed, and then the components related to the eye-blink artifacts are detected using Kurtosis and K-means. The MZS is used to detect regions of only eye-blink artifacts in the independent component. The classical Least Mean Squares (LMS) and Normalized LMS (NLMS) algorithms are used in the proposed ANC system. To comprehensively test the performance of the proposed method, simulated and real-world EEG datasets are used. The proposed system is compared with ANC systems having different reference inputs, Zeroing-ICA, and OD-ICA. In the simulated EEG dataset, the obtained overall RE, CC, SAR, SNR, Sensitivity, Specificity, and Area Under Curve (AUC) values are 0.1505, 0.9875, 1.3863, 2.7708, 100%, 93.8%, and 0.9380, respectively. In the real-world dataset, the obtained overall RE, CC, SAR, and SNR values are 0.0252, 0.9916, 2.8439, and 5.6944, respectively. The results suggest that the proposed method exhibits better performance concerning the given criteria. The proposed system does not require an external electrode for measuring eye-blink artifacts. This distinct advantage provided ensures a comfortable measurement for patients during long-term EEG recordings.
机译:脑电图(EEG)信号经常用于若干区域,例如疾病和BCI应用的诊断。使用eeg删除用于应用程序的噪声源非常重要。本文介绍了一种混合系统,通过组合多种方法,例如独立分量分析(ICA),Kurtosis,K-Means,改进的Z-Score(MZS)和自适应噪声消除器(ANC)来自动地从EEG自动删除eEG的眼睛眨眼伪像。在所提出的方法中,首先分解所有EEG记录,然后使用Kurtosis和K-Means检测与眼睛眨眼伪像相关的组分。 MZS用于检测独立组件中只有眼睛眨眼伪像的区域。在所提出的ANC系统中使用经典最小均方(LMS)和归一化LMS(NLMS)算法。为了综合测试所提出的方法的性能,使用模拟和实际的EEG数据集。将所提出的系统与具有不同参考输入,ZEREING-ICA和OD-ICA的ANC系统进行比较。在模拟EEG数据集中,曲线(AUC)值下获得的总体RE,CC,SAR,SNR,敏感性,特异性和面积分别为0.1505,0.9875,1.3863,2.7708,100%,93.8%和0.9380。在现实世界数据集中,所获得的整体RE,CC,SAR和SNR值分别为0.0252,0.9916,2.8439和5.6944。结果表明,该方法表现出对给定标准的更好表现。所提出的系统不需要外部电极测量眨眼伪像。在长期EEG记录期间,提供了这种明显的优势确保为患者进行舒适的测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号