首页> 外文OA文献 >Maximum likelihood estimation of factor models on data sets with arbitrary pattern of missing data
【2h】

Maximum likelihood estimation of factor models on data sets with arbitrary pattern of missing data

机译:具有任意缺失数据模式的数据集上因子模型的最大似然估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we propose a methodology to estimate a dynamic factor model on data sets with an arbitrary pattern of missing data. We modify the Expectation Maximisation (EM) algorithm as proposed for a dynamic factor model by Watson and Engle (1983) to the case with general pattern of missing data. We also extend the model to the case with serially correlated idiosyncratic component. The framework allows to handle efficiently and in an automatic manner sets of indicators characterized by different publication delays, frequencies and sample lengths. This can be relevant e.g. for young economies for which many indicators are compiled only since recently. We also show how to extract a model based news from a statistical data release within our framework and we derive the relationship between the news and the resulting forecast revision. This can be used for interpretation in e.g. nowcasting applications as it allows to determine the sign and size of a news as well as its contribution to the revision, in particular in case of simultaneous data releases. We evaluate the methodology in a Monte Carlo experiment and we apply it to nowcasting and backdating of euro area GDP.
机译:在本文中,我们提出了一种方法,用于估计具有任意丢失数据模式的数据集上的动态因子模型。我们将Watson和Engle(1983)为动态因子模型提出的期望最大化(EM)算法修改为具有丢失数据的一般模式的情况。我们还将模型扩展到具有序列相关特质成分的情况。该框架允许以自动方式高效处理一组指标,这些指标以不同的出版延迟,频率和样本长度为特征。这可能是相关的,例如直到最近才对许多指标进行汇编的年轻经济体。我们还将展示如何从我们框架内的统计数据发布中提取基于模型的新闻,并推导新闻与结果预测修订之间的关系。这可以用于例如即时广播应用程序,因为它可以确定新闻的符号和大小以及其对修订的贡献,特别是在同时发布数据的情况下。我们在蒙特卡洛实验中评估该方法,并将其应用于欧元区GDP的临近预报和追溯。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号