首页> 外文OA文献 >The quantile performance of statistical treatment rules using hypothesis tests to allocate a population to two treatments
【2h】

The quantile performance of statistical treatment rules using hypothesis tests to allocate a population to two treatments

机译:统计处理规则的分位数表现使用假设检验将人口分配到两个处理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper modifies the Wald development of statistical decision theory to offer new perspective on the performance of certain statistical treatment rules. We study the quantile performance of test rules, ones that use the outcomes of hypothesis tests to allocate a population to two treatments. Let lambda denote the quantile used to evaluate performance. Define a test rule to be lambda-quantile optimal if it maximizes lambda-quantile welfare in every state of nature. We show that a test rule is lambda-quantile optimal if and only if its error probabilities are less than lambda in all states where the two treatments yield different welfare. We give conditions under which lambda-quantile optimal test rules do and do not exist. A sufficient condition for existence of optimal rules is that the state space be finite and the data enable sufficiently precise estimation of the true state. Optimal rules do not exist when the state space is connected and other regularity conditions hold, but near-optimal rules may exist. These nuanced findings differ sharply from measurement of mean performance, as mean optimal test rules generically do not exist. We present further analysis that holds when the data are real-valued and generated by a sampling distribution which satisfies the monotone-likelihood ratio (MLR) property with respect to the average treatment effect. We use the MLR property to characterize the stochastic-dominance admissibility of STRs when the data have a continuous distribution and then generate findings on the quantile admissibility of test rules.
机译:本文修改了统计决策理论的Wald发展,为某些统计处理规则的性能提供了新的视角。我们研究检验规则的分位数性能,检验规则使用假设检验的结果将总体分配给两种处理。让lambda表示用于评估性能的分位数。如果在每个自然状态下最大化λ分位数的福利,则将测试规则定义为λ分位数最佳。我们表明,当且仅当在两种处理产生不同福利的所有州中,当且仅当其错误概率小于lambda时,检验规则才是lambda分位数最优的。我们给出了λ-分位数最佳测试规则存在和不存在的条件。存在最优规则的充分条件是状态空间是有限的,并且数据使得能够对真实状态进行足够精确的估计。当连接状态空间且其他规则性条件成立时,最佳规则不存在,但是可能存在接近最佳的规则。这些细微差别的发现与平均性能的度量存在显着差异,因为通常不存在最佳最佳测试规则。我们提出了进一步的分析,该分析在对数据进行实值评估并通过满足平均治疗效果的单调似然比(MLR)属性的采样分布生成时得出。当数据具有连续分布时,我们使用MLR属性表征STR的随机支配性,然后生成关于测试规则的分位数可采性的发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号