首页> 外文OA文献 >Forecasting the Variability of Stock Index Returns with Stochastic Volatility Models and Implied Volatility
【2h】

Forecasting the Variability of Stock Index Returns with Stochastic Volatility Models and Implied Volatility

机译:用随机波动率模型和隐含波动率预测股指收益率的变异性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we compare the predictive abilility of Stochastic Volatility (SV)models to that of volatility forecasts implied by option prices. We develop anSV model with implied volatility as an exogeneous var able in the varianceequation which facilitates the use of statistical tests for nested models; werefer to this model as the SVX model. The SVX model is then extended to avolatility model with persistence adjustment term and this we call the SVX+model.This class of SV models can be estimated by quasi maximum likelihood methods butthe main emphasis will be on methods for exact maximum likelihood using MonteCarlo importance sampling methods. The performance of the models is evaluated,both within sample and out-of-sample, for daily returns on the Standard & Poor's100 index. Similar studies have been undertaken with GARCH models where findingswere initially mixed but recent research has indicated that impliedvolatilityprovides superior forecasts. We find that implied volatilityoutperforms historical returns in-sample but that the latter containsincremental information in the form of stochastic shocks incorporated in the SVXmodels. The out-of-sample volatility forecasts are evaluated against dailysquared returns and intradaily squared returns for forecasting horizons rangingfrom 1 to 10 days. For the daily squared returns we obtain mixed results, butwhen we use intradaily squared returns as a measure of realised volatility wefind that the SVX+ model produces the most accurate out-of-sample volatilityforecasts and that the model that only utilises implied volatility performes theworst as its volatility forecasts are upwardly biased.
机译:在本文中,我们将随机波动率(SV)模型的预测能力与期权价格所隐含的波动率预测进行了比较。我们开发了一个隐含波动率的SV模型,作为方差方程中的外生变量,这有助于对嵌套模型进行统计检验。将此模型称为SVX模型。然后将SVX模型扩展为具有持久性调整项的波动率模型,我们将其称为SVX +模型。此类SV模型可以通过拟最大似然法进行估计,但主要重点在于使用蒙特卡洛重要性抽样的精确最大似然法方法。在样本内和样本外评估模型的性能,以获取标准普尔100指数的每日收益。 GARCH模型已经进行了类似的研究,最初发现的结果混杂在一起,但是最近的研究表明隐含波动率提供了更好的预测。我们发现,隐含波动率优于样本中的历史回报,但后者包含以SVX模型并入的随机冲击形式的增量信息。样本外波动率预测是针对每日范围的收益和每日范围内的收益进行评估的,预测范围为1到10天。对于每日平方收益,我们会得出不同的结果,但是当我们使用每日平方收益作为衡量实际波动率的指标时,我们发现SVX +模型会产生最准确的样本外波动率预测,而仅利用隐含波动率的模型表现最差。波动率预测有偏差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号