首页> 外文OA文献 >Learning Causal Relations in Multivariate Time Series Data
【2h】

Learning Causal Relations in Multivariate Time Series Data

机译:在多元时间序列数据中学习因果关系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Applying a probabilistic causal approach, we define a class of time series causal models (TSCM) based on stationary Bayesian networks. A TSCM can be seen as a structural VAR identified by the causal relations among the variables. We classify TSCMs into observationally equivalent classes by providing a necessary and sufficient condition for the observational equivalence. Applying an automated learning algorithm, we are able to consistently identify the data-generating causal structure up to the class of observational equivalence. In this way we can characterize the empirical testable causal orders among variables based on their observed time series data. It is shown that while an unconstrained VAR model does not imply any causal orders in the variables, a TSCM that contains some empirically testable causal orders implies a restricted SVAR model. We also discuss the relation between the probabilistic causal concept presented in TSCMs and the concept of Granger causality. It is demonstrated in an application example that this methodology can be used to construct structural equations with causal interpretations.
机译:应用概率因果方法,我们基于固定贝叶斯网络定义了一类时间序列因果模型(TSCM)。 TSCM可以看作是由变量之间的因果关系确定的结构化VAR。通过为观测等效性提供必要和充分的条件,我们将TSCM分为观测等效类。应用自动学习算法,我们能够始终如一地识别出数据生成的因果结构,直到观察等价物为止。通过这种方式,我们可以根据观察到的时间序列数据表征变量之间的经验可检验因果顺序。结果表明,尽管无约束的VAR模型并不暗示变量中的任何因果顺序,但是包含一些凭经验可检验的因果顺序的TSCM意味着SVAR模型受限制。我们还讨论了TSCM中提出的概率因果关系与Granger因果关系之间的关系。在一个应用实例中证明,该方法可用于构造因果解释的结构方程。

著录项

  • 作者

    Chen Pu; Chihying Hsiao;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号