首页> 外文OA文献 >Estimation and Forecasting of Large Realized Covariance Matrices and Portfolio Choice
【2h】

Estimation and Forecasting of Large Realized Covariance Matrices and Portfolio Choice

机译:估计和预测大型实现协方差矩阵和资产组合选择

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we consider modeling and forecasting of large realized covariance matrices by penalized vector autoregressive models. We propose using Lasso-type estimators to reduce the dimensionality to a manageable one and provide strong theoretical performance guarantees on the forecast capability of our procedure. To be precise, we show that we can forecast future realized covariance matrices almost as precisely as if we had known the true driving dynamics of these in advance. We next investigate the sources of these driving dynamics for the realized covariance matrices of the 30 Dow Jones stocks and find that these dynamics are not stable as the data is aggregated from the daily to the weekly and monthly frequency. The theoretical performance guarantees on our forecasts are illustrated on the Dow Jones index. In particular, we can beat our benchmark by a wide margin at the longer forecast horizons. Finally, we investigate the economic value of our forecasts in a portfolio selection exercise and find that in certain cases an investor is willing to pay a considerable amount in order get access to our forecasts.
机译:在本文中,我们考虑通过惩罚矢量自回归模型对大型实现的协方差矩阵进行建模和预测。我们建议使用套索型估计器将维数减少到可管理的范围,并为我们的过程的预测能力提供有力的理论性能保证。确切地说,我们表明我们可以像预测事先知道的真实驾驶动态一样精确地预测未来实现的协方差矩阵。接下来,我们针对30个道琼斯股票的已实现协方差矩阵调查了这些驱动动力的来源,并发现这些动力是不稳定的,因为数据是每天,每周和每月的频率汇总而成。道琼斯指数显示了我们预测的理论表现保证。特别是,在更长的预测范围内,我们可以大大超过我们的基准。最后,我们在投资组合选择活动中调查了我们的预测的经济价值,发现在某些情况下,投资者愿意支付大量的费用才能获得我们的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号