首页> 外文OA文献 >Outlier Detection in Structural Time Series Models: the Indicator Saturation Approach
【2h】

Outlier Detection in Structural Time Series Models: the Indicator Saturation Approach

机译:结构时间序列模型中的异常值检测:指标饱和度方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Structural change affects the estimation of economic signals, like the underlying growth rate or the seasonally adjusted series. An important issue, which has attracted a great deal of attention also in the seasonal adjustment literature, is its detection by an expert procedure. The general to specific approach to the detection of structural change, currently implemented in Autometrics via indicator saturation, has proven to be both practical and effective in the context of stationary dynamic regression models and unit-root autoregressions. By focusing on impulse- and step-indicator saturation, we investigate via Monte Carlo simulations how this approach performs for detecting additive outliers and level shifts in the analysis of nonstationary seasonal time series. The reference model is the basic structural model, featuring a local linear trend, possibly integrated of order two, stochastic seasonality and a stationary component. Further, we apply both kinds of indicator saturation to detect additive outliers and level shifts in the industrial production series in five European countries.
机译:结构性变化会影响经济信号的估计,例如潜在的增长率或季节性调整后的序列。在季节性调整文献中也引起了极大关注的一个重要问题是通过专家程序进行检测。目前,通过指标饱和度在Autometrics中实施的用于检测结构变化的一般方法到特定方法,在静态动态回归模型和单位根自回归的背景下已被证明既实用又有效。通过关注脉冲指标和阶跃指标的饱和度,我们通过蒙特卡洛模拟研究了这种方法在非平稳季节时间序列分析中如何检测附加值离群和水平移动。参考模型是基本的结构模型,其特征是局部线性趋势,可能整合了二阶,随机季节性和平稳成分。此外,我们同时使用两种指标饱和度来检测五个欧洲国家/地区的工业生产序列中的附加异常值和水平移动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号